Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $11.99/month after trial. Cancel anytime.

Intelligence in Plants and Animals
Intelligence in Plants and Animals
Intelligence in Plants and Animals
Ebook582 pages8 hours

Intelligence in Plants and Animals

Rating: 0 out of 5 stars

()

Read preview

About this ebook

Intelligence in Plants and Animals is a philosophical rumination on the human aspects of nature. You will be inspired by the study of plants and animals to understand humanity and our collective, spiritual responsibility toward the protection of animals and plants. Excerpt: “Nothing is more charming to the mind of man than the study of Nature.”
LanguageEnglish
PublisherSharp Ink
Release dateJun 15, 2022
ISBN9788028207007
Intelligence in Plants and Animals

Related to Intelligence in Plants and Animals

Related ebooks

Psychology For You

View More

Related articles

Reviews for Intelligence in Plants and Animals

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Intelligence in Plants and Animals - Thomas G. Gentry

    Thomas G. Gentry

    Intelligence in Plants and Animals

    Sharp Ink Publishing

    2022

    Contact: info@sharpinkbooks.com

    ISBN 978-80-282-0700-7

    Table of Contents

    PREFACE.

    FULL PAGE PLATES.

    LIFE AND ITS CONDITIONS.

    PLANTS THAT FEED ON INSECTS.

    SLIME-ANIMALS.

    PRIMITIVE LASSO-THROWERS.

    FIVE-FINGERED JACK ON THE OYSTER.

    EARTH-WORMS IN HISTORY.

    FIDDLER- AND HERMIT-CRABS.

    FUNNEL-WEB BUILDER.

    BOOK-LOVERS.

    YOU-EE-UP.

    TOWER-BUILDING CICADA.

    HONEY-DEW.

    MILCH-COWS OF THE ANTS.

    LIVING ARTILLERY.

    BRIGHT AND SHINING ONES.

    QUEEN OF AMERICAN SILK-SPINNERS.

    BASKET-CARRIERS.

    HONEY-PRODUCING CATERPILLARS.

    HIBERNATING BUTTERFLIES.

    LEAF-CUTTER BEE.

    BATTLE BETWEEN ANTS.

    NEST-BUILDING FISHES.

    SLIPPERY AS AN EEL.

    RANA AND BUFO.

    OUR NATURAL ENEMIES.

    HOUSE-BEARING REPTILES.

    SUMMER DUCK.

    AMERICAN WOODCOCK.

    PIPING PLOVER.

    BOB WHITE.

    RUFFED GROUSE.

    AN OLD ACQUAINTANCE.

    AMERICAN OSPREY.

    TURKEY BUZZARD.

    RARE AND CURIOUS NESTS.

    STRANGE FRIENDSHIP.

    NATURE’S LITTLE STORE-KEEPER.

    CANINE SAGACITY.

    FELINE INTELLIGENCE.

    BRIGHT LITTLE CEBIDAE.

    UNTUTORED MAN.

    LIVING SOULS.

    CONSCIOUSNESS IN PLANTS.

    MIND IN ANIMALS.

    LIFE PROGRESSIVE.

    SURVIVAL OF THE FITTEST.

    MAN’S PREËMINENCE.

    FUTURE LIFE.

    PREFACE.

    Table of Contents

    Nothing is more charming to the mind of man than the study of Nature. Religion, moderation and magnanimity have been made a part of his inner being through her teachings, and the soul has been rescued by her influence from obscurity. No longer doth man grovel in the dust, seeking, animal-like, the gratification of low and base desires, as was his wont, but on the wings of thought is enabled to soar to the very gates of Heaven and hold communion with God.

    Though made a little lower than the angels, yet, through the mighty play of forces that have been at work in the world, which we, in the latter half of this enlightened century, are just beginning to recognize and comprehend, he has been lifted from the mire of degradation and placed upon a higher social, intellectual, moral and spiritual level. Out of the animal, in the scheme of Deity, the spiritual system of things is to be elaborated, and not the animal out of the spiritual. This natural world, so to speak, is the raw material of the spiritual. Therefore, ere man can understand the spiritual, he must understand the natural. Though his knowledge was at first about material things, or such as pertained to natural phenomena, yet from this through the ages has been builded, little by little, that mountain-height of knowledge, intellectual and moral, which, if rightly directed, is to bring him into fellowship with Deity. As we have borne the image of the earthy, we shall also bear the image of the heavenly, or, Lord from heaven.

    When is considered, therefore, the immense good which the study and investigation of nature have accomplished, it is not at all surprising that the literature on the subject should be markedly in the ascendant. Natural science bids fair to be in a preëminent degree the pursuit of the coming man. There is no end to the books that have been written upon the subject during the past few decades, if not by specialists, but by men and women who have been well informed and who have made themselves fully capable of contemplating understandingly the world which lies about them.

    Our libraries are to-day quite affluent in books that are the handmaids of natural science. Michelet and Hugh Miller, in their day, opened glorious new worlds before a rising generation, and that generation is now doing excellent work under the inspiration of the impetus which it then received. Tait, Balfour Stewart, Dawson, Gray, McCook, Thompson, Scudder, Mrs. Treat, Olive Thorne Miller and others have done much to continue the interest, pleasure and enthusiasm awakened by those earlier writers, and even Darwin and Huxley themselves, in detailing their experiments, have not scorned to bring their thoughts within the range of narrower minds.

    But in the popularization of natural science no man has done more than Rev. J. G. Wood in his numerous works. Not only have his writings created in thousands a taste for nature-studies, but they have been no less the means of cultivating the observation, awakening enthusiasm and directing effort in the lines of original research and discovery. Certainly no one, as his many writings so abundantly attest, possessed a larger fund of knowledge concerning the powers and capabilities of the lower animals than this author. Few knew our domestic animals better than he, and none was more capable of judging of the mental and moral status which they should occupy in the world of animals. It is true that men and women, eminent in theology, literature and science, had expressed a belief in the idea that the latent powers and capacities of the lower animals might be developed in a future life, but no one had felt secure enough in this belief to warrant more than a passing thought or two upon the subject.

    Bishop Butler, in his Analogy of Religion, undoubtedly believed the lower animals capable of a future life. In speaking of them in this connection in the opening of his work, he says: It is said these observations are equally applicable to brutes; and it is thought an insuperable difficulty that they should be immortal, and by consequence capable of everlasting happiness. And this manner of expression is both invidious and weak; but the thing intended by it is really no difficulty at all, either in the way of natural or moral consideration. Referring then to the undeveloped powers and capacities of the so-called brutes, the Bishop could perceive no reason why they should not attain their development in an existence beyond the earth-life. It was in pursuance of this same train of thought that Rev. J. G. Wood was led to show in a work, entitled Man and Beast Here and Hereafter, that the lower animals do possess those mental and moral characteristics—the attributes of reason, language, memory, moral responsibility, unselfishness and love—which we admit in man as belonging to the immortal spirit, rather than to the perishable body. Having previously cleared away the difficulties which certain passages in the Old Testament seemingly interposed, and proved that the Scriptures do not deny futurity of life to lower animals, he very naturally concluded that as man expects to retain these qualities in the future life there is every reason to suppose that they may share his immortality in the Hereafter as in the Now they are partakers of his mortal nature.

    Few minds, unswayed by thoughts materialistic, can study the living works of God, whether vegetal or animal, and fail to be convinced that they, as living exponents of Divine conceptions, are as needful in the world of spirit as in the world of matter. While many are disposed to believe that man will share the future life with beast, bird, insect and such like, yet but few, if any, can be found who believe that tree and shrub and flower will be there to continue the life begun on earth and reach out to higher and fuller development. In announcing this belief, the author but expresses a conviction as deep as any that could occupy a human mind. The possession of soul and spirit can be predicated no less of plants than of man and the lower animals. They have all one breath or life and one spirit, and as such are living souls, living, breathing frames or bodies of life. From being living, breathing frames, and endowed with the same life and spirit as man and the lower animals, they have all one destiny, for all go unto one place; all are of the dust, and all turn to dust again. But of the new life which Christ came down to earth to proffer to man that he might inherit the kingdom of God. While to man it was only offered, and had for its purpose the uplifting and improvement of his earth-life by the promise of something higher and better to those who are accounted worthy, yet there can be no doubt that it was equally intended through his uplifting to place all the creatures of the earth over which he was given dominion by God upon a more elevated and nobler plane, so that those which had been profited in the earth-life by his beneficent influence should become partakers with him in the new life, when Christ shall transfigure the body of our humiliation, that it may become of like form with the body of His glory, by the power of that which enables Him even to subdue all things to Himself. As all existence is a unit, which the author has taken especial pains through the body of this book to impress upon the minds of his readers, it can hardly be conceived that an all-wise God, who is infinite in love, mercy and justice, would look to the preservation in a future state of but a very small part of the life which He has been instrumental in placing upon this earth. It would be more consistent with His attributes, and with the scheme of development of life upon our planet, whereby life has been progressive, the fittest only being allowed to survive, to have provided in the grand plan of redemption, not merely the salvation of the highest of earth-life, but of all life, the purest and the best, that would represent in the heaven-life, in spiritualized form, the highest living exponents of Divine ideas. No other belief accords so well with the teachings of science and philosophy. In its acceptance, for it makes all life related to the Divine life, can there be any hope of escape from materialism, that curse of the age.

    Thomas G. Gentry, Sc. D.

    Philadelphia, February 28, 1897.

    FULL PAGE PLATES.

    Table of Contents

    From Photographs from Nature by A. Radclyffe Dugmore.

    LIFE AND IMMORTALITY.

    LIFE AND ITS CONDITIONS.

    Table of Contents

    All natural objects, roughly divided, arrange themselves into three groups, constituting the so-called Mineral, Vegetable and Animal kingdoms. Mineral bodies are all devoid of life. They consist of either a single element, or, if combined, occur in nature in the form of simple compounds, composed of more than two or three elements. They are homogeneous in texture, or, when unmixed, formed of similar particles which have no definite relations to one another. In form they are either altogether indefinite, when they are said to be amorphous, or have a definite shape, called crystalline, in which case they are ordinarily bounded by plane surfaces and straight lines. When mineral bodies increase in size, as crystals may do, the increase is produced simply by accretion. They exhibit purely physical and chemical phenomena, and show no tendency to periodic changes of any kind. Fossils or petrifactions, which owe their existence and characters to beings which lived in former periods of the earth’s history, cannot, though made up of mineral matter, be properly said to belong to the mineral kingdom.

    But objects belonging to the vegetable and animal kingdoms differ markedly from inert, lifeless, mineral matter. Carbon, hydrogen, oxygen and nitrogen are the most important of the few chemical elements which enter into their composition, and these elements are combined into complex organic compounds, which always contain a large percentage of water, are very unstable, and prone to spontaneous decomposition. They are composed of heterogeneous, but related, parts, termed organs, the objects possessing them being called organized bodies. Some of the lowest forms of animals have bodies whose substance is so uniform that they exhibit no definite organs, but this exception does not affect the general value of this distinction. They are always more or less definite in shape, presenting concave and convex surfaces, and being limited by curved lines. When they increase in size, or grow, as we properly term it, it is not by the addition of particles from the outside, but by the reception of foreign matter into their interior and its consequent assimilation. Certain periodic changes, which follow a definite and discoverable order, are invariably passed through by organized bodies. These changes constitute what is known as life. All the objects, then, which fulfil these conditions are said to be alive, and they all appertain either to the vegetable or the animal kingdom. The study of living objects, no matter to which kingdom they belong, is therefore conveniently called by the general name of Biology, which means a discourse on life. And as all living objects may be referred to one or other of these kingdoms, so Biology may be divided into Botany, which treats of plants, and Zoölogy, which treats of animals.

    Now that we have divided all organized bodies into plants and animals, it becomes necessary to inquire into the differences which subsist between them, and which will enable us to separate the kindred sciences of Botany and Zoölogy. Nothing was thought so easy by older observers than the determination of the animal or vegetable nature of any given organism, but, in point of fact, no hard-and-fast line can be drawn, in the existing state of our knowledge, between the animal and vegetable kingdoms, and it is sometimes difficult, or even impossible, to decide with positiveness whether we are dealing with a plant or an animal. In the higher orders of the two kingdoms there is no difficulty in reaching a decision, the higher animals being readily separated from the higher plants by the possession of a nervous system, of a locomotive power which can be voluntarily exercised, and of an internal cavity adapted for the reception and digestion of solid food. No so-called nervous system or organs of sense are possessed by the higher plants, although some of them doubtlessly manifest conscious and intelligent action, nor are they capable of voluntary changes of place, nor provided with any definite internal cavity, their food being generally fluid or gaseous.

    Descending the scale to the very bottom, we reach a class of animals, the Protozoa, which cannot be separated in many cases from the Protophyta by these distinctions, since many of the former have no digestive cavity, nor the slightest trace of a nervous system, while many of the latter possess the power of active locomotion. As to external configuration, no certain rules can be laid down for separating animals and plants, many of the lower plants, either in their earlier stages, or in their maturity, being exactly similar in form to some of the lower animals. This is the case with some of the Algæ, which resemble very closely in form certain Infusorian animalcules. Again, many undoubted animals, which are rooted to solid objects in their adult state, are so plant-like in appearance as to be popularly regarded as vegetables. The Sea-firs, and the more highly organized Flustras or Sea-mats, which are usually considered as sea-weeds by sea-side visitors, are a few of many examples that might be taken from the so-called Hydroid Zoöphytes. No decided distinction between animals and plants can be drawn as to their minute internal structure, both alike consisting of molecules, of cells, or of fibres. Some decided, though not universal, differences exist in chemical composition. Plants exhibit a decided predominance of ternary compounds, or compounds which, like sugar, starch and cellulose, are made up of the three elements, carbon, hydrogen and oxygen, but are, comparatively speaking, poorly supplied with quaternary compounds, or those which contain an additional element of nitrogen. Animals, on the contrary, are rich in quaternary nitrogenized compounds, such as albumen or fibrin. Still, in both kingdoms we find nitrogenized and non-nitrogenized compounds, and it is only in the proportion which these sustain to each other in the organism that animals differ in any way from plants.

    Before the invention of the microscope, no independent voluntary movements, if we except the opening and closure of flowers, and their turning towards the sun, the drooping of the leaves of sensitive plants under irritation, and some other kindred phenomena, were known in plants. Now, however, we know of many plants which are endowed, either when young or throughout life, with the power of effecting voluntary movements apparently as spontaneous and independent as those performed by the lower animals, the movements being brought about by means of little vibrating cilia, or hairs, with which a part or the whole of the surface is furnished. When it is added that many animals are permanently rooted, in their fully-grown condition, to solid objects, it will at once be apparent that no absolute distinction can be made between animals and plants merely because of the presence or absence of independent locomotive power.

    There is, however, a test, the most reliable of all that have been discovered, by which an animal may be distinguished from a plant, and that is the nature of the food and the products which are elaborated therefrom in the body. Plants live upon such inorganic substances as water, carbonic acid and ammonia, and they have the power of manufacturing out of these true organic materials, and are therefore the great producers of nature. All plants which contain green coloring matter, technically called chlorophyll, break up carbonic acid in the process of digestion into its two constituents of carbon and oxygen, retaining the former and setting the latter free. And as the atmosphere always contains carbonic acid in small quantities, the result is that plants remove carbonic acid therefrom and give out oxygen. Animals, on the other hand, have no power of living on water, carbonic acid and ammonia, nor of converting these into the complex organic substances of their bodies. That their existence may be maintained animals require to be supplied with ready-made organic compounds, and for these they are all dependent upon plants, either directly or indirectly. In requiring as food complex organic bodies, which they ultimately reduce to very simply inorganic ones, animals are thus found to differ from plants. Whilst plants are the great manufacturers in nature, animals are the great consumers. Another distinction, arising from the nature of their food, is that animals absorb oxygen and throw out carbonic acid, their reaction upon the atmosphere being exactly the reverse of that of plants. There are organisms, it must be understood, which are genuine plants so far as their nutritive processes are concerned, but which, nevertheless, are in the possession of characters which could locate them among the animals. Volvox, so abundant in our streams during the proper seasons, affords a splendid illustration of the truth of this statement. Plants, which are devoid of chlorophyll, as is the case with the Fungi, do not possess the power of decomposing carbonic acid under the influence of sunlight, but are like animals in requiring organic compounds for their food. Two points must therefore be borne in mind in regarding the general distinctions between plants and animals which we have thus briefly outlined, and these are that they cannot often be applied in practice to ambiguous microscopic organisms, and certainly not to plant-forms that are destitute of chlorophyll.

    That life should manifest itself certain conditions are essential, but some of which, though generally present, are not absolutely indispensable. One condition, however, seems to be very necessary, and that is that the living body should be composed of a certain material. This material, which forms the essential and fundamental parts of everything living, whether vegetable or animal, is technically called protoplasm. Other substances than it are often found in living bodies, but it is in protoplasm only that vitality appears to be inherent.

    But whether it is the same in plants as in animals is a matter of opinion. One thing, however, seems reasonably certain, and that is that it is the medium or vehicle through which vital force is made manifest. Used in its general sense, protoplasm is chemically related in its nature to albumen, and generally has the character of a jelly-like, semi-fluid, transparent material, which, in itself, exhibits no definiteness of structure. When heated to a certain temperature it coagulates, just as the white of an egg does when boiled. Living protoplasm has the power of movement, of increasing in size or of maintaining its existence by the assimilation of fresh and foreign materials, and of detaching portions of itself which may subsequently develop into fresh masses. Though protoplasm be present in the ova of animals and the seeds of plants, yet there is no external and visible manifestation of life. There is in them what is called a dormant vitality, which may remain for a long time unchanged, until altered external circumstances cause the organism to pass into a state of active life.

    Generally, certain external conditions must be present before any external vital phenomena can be manifested. The presence of atmospheric air, or rather of free oxygen, is in an ordinary way essential to active life. Life, that is its higher manifestations, is only possible between certain ranges of temperature, varying from near the freezing point to about 120° Fahrenheit. As water is a necessary constituent of protoplasm in its living state, so it becomes an absolutely essential requisite to the carrying on of vital processes of all kinds, for the mere drying of an animal or plant will, in most cases, kill it outright, and will always bring about a suspension of all visible life-phenomena.

    While the large majority of living beings are organized, or composed of different parts, called organs, which sustain certain relations with one another, and which discharge different offices, yet it must not therefore be concluded that organization is a necessary accompaniment of vitality, or that all living creatures are organized. Innumerous low forms of life, so low that they occupy the very lowest place in the scale of animated existences, absolutely exhibit no visible structure, and cannot, therefore, be said to be organized, but they, nevertheless, discharge all their vital functions just as well as though they possessed special organs for the purpose. Concluding our theme, we are forced to admit that animals are organized, or possess structure, because they are alive, and not that they live because they are organized. By carefully comparing the morphological and physiological differences between different animals and plants, naturalists have divided the entire animal and vegetable kingdoms into a number of divisions, whose leading characteristics may be found in almost every text-book. All that we promised ourselves when this work was first thought of was a brief treatment of a few of the most interesting life-forms of this planet of ours in the light of their ways and doings, and the direction of human thought to those traits of character and manifestations of conscious intelligence which fit them to become partakers with man of that new life which awaits him beyond the grave.

    PLANTS THAT FEED ON INSECTS.

    Table of Contents

    Perhaps it would be difficult to find in the whole range of vegetable creation anything more curious than the carnivorous or flesh-eating plants. That animals eat plants creates in us no emotion of curiosity, for this is the common law of nature. But that plants should devour animals is a marvel to which few minds uninitiated in science would give credence. Though these strange forms of vegetable life have been known for about a century, yet it has been but a few years since the attention of naturalists was first specially called to their habits and character. No one has probably done more to explain the life and operations of the flesh-eating plants than Mr. Darwin.

    For centuries strange rumors had been circulated of the existence of huge plants in the more remote and unvisited parts of Asia which would imprison and destroy large animals and men that would venture within reach of their great quivering leaves armed with hooked spines, the flesh of the dead victim being absorbed into their structure, but all these giant flesh-eating trees or plants have so far proved to be mere myths. Science has discovered, however, that there is some foundation for these exciting fictions, and it has not been obliged to go to the distant East to find it, for flesh-eating plants are by no means uncommon in this country and Europe. But these plants confine their destructive propensities to the crawling and flying insects which are beguiled by some tempting reward to rest on their leaves. Such a strange provision of nature is no less interesting than if these plants had the power to destroy the larger animals, for it is the fact itself which startles the attention by its seeming reversal of natural laws.

    No better example of carnivorous plants could be taken than Dionæa muscipula, or to use the common name, Venus’s Fly-trap. It is a species that is indigenous to North Carolina and the adjacent parts of South Carolina, affecting sandy bogs in the pine forests from April to June, and a representative of the Droscraceæ, or Sundew Family. One cannot fail after once seeing it of becoming impressed with its peculiar characteristics. It is a smooth perennial herb with tufted radical leaves on broadly-winged, spatulate stems, the limb orbicular, notched at both ends, and fringed on the margins with strong bristles. From the centre of the rosette of leaves proceeds at the proper time a scape or leafless stalk which terminates in an umbel-like cyme of from eight to ten white bracted flowers, each flower being one inch in diameter. The roots are small and consist of two branches each an inch in length springing from a bulbous enlargement. Like an epiphytic orchid, these plants can be grown in well-drained damp moss without any soil, thus showing that the roots probably serve for the absorption of water solely. Three minute pointed processes or filaments, placed triangularly, project from the upper surface of each lobe of the bi-lobed leaf, although cases are observed where four and even ten filaments are found. These filaments are remarkable for their extreme sensitiveness to touch, as shown not only by their own movement, but by that of the lobes also. Sharp, rigid projections, diminutive spikes as it were, stand out from the leaf-margins, each of which being entered by a bundle of spiral vessels. They are so arranged that when the lobes close they interlock like the teeth of an old-fashioned rat-trap. That considerable strength may be had, the mid-rib of the leaf, on the lower side, is quite largely developed.

    Minute glands, of a reddish or purplish color, thickly cover the upper surface of the leaf, excepting towards the margins, the rest of the leaf being green. No glands are found upon the spikes or upon the foliaceous footstalk. From twenty to thirty polygonal cells, filled with purple fluid, constitute each gland. They are convex above, somewhat flattened underneath, and stand on very short pedicels, into which spiral vessels do not enter. They have the power of secretion under certain influences, and also that of absorption. Minute octofid projections, of a reddish-brown color, are scattered in considerable numbers over the footstalk, the backs of the leaves and the spikes, with a few on the upper surfaces of the lobes.

    The sensitive filaments, which are a little more than one-twentieth of an inch in length, and thin, delicate and tapering to a point, are formed of several rows of elongated cells, filled with a purplish fluid. They are sometimes bifid or even trifid at the apex, and towards the base there is a constriction formed of broader cells, and beneath the constriction an articulation, supported on an enlarged base, consisting of differently shaped polygonal cells. As the filaments project at right angles to the surface of the leaf, they would have been in danger of being broken off whenever the lobes closed together had it not been for the articulation, which allows them to bend flat down. So exquisitely sensitive are these filaments, from their tips to their bases, to a momentary touch, that it is hardly possible to touch them even so lightly or quickly with any hard object without causing the lobes to close, but a piece of delicate human hair, two and a-half inches in length, held dangling over a filament so as to touch it, or pinches of fine wheaten flour, dropped from a height, produce no effect. Though not glandular, and hence incapable of secretion, yet the filaments by their sensitiveness to a momentary touch, which is followed by the rapid closure of the lobes of the leaf, assure to Dionæa the necessary supply of insect food for all its wants.

    Inorganic bodies, even of large size, such as bits of stone, glass and such like, or organic bodies not containing nitrogeneous matter in a soluble condition, as bits of cork, wood, moss for examples, or bodies containing soluble nitrogeneous matter, if perfectly dry, such as small pieces of meat, albumen, gelatine, etc., may be long left on the lobes, and no movement is excited. But when nitrogeneous organic bodies, which are all damp, are left on the lobes, the result is widely different, for these then close by a slow and gradual movement and not in a rapid manner as when one of the sensitive filaments is touched by a hard substance. Small purplish, almost sessile glands, as has already been stated, thickly cover the upper surface of the lobes. These have the power both of secretion and absorption, but they do not secrete until excited by the absorption of nitrogeneous matter. No other excitement, as far as experiments show, produces this effect. When the lobes are made to close over a bit of meat or an insect, the glands over the entire surface of the leaf emit a copious discharge, as in this case the glands on both sides are pressed against the meat or insect, the secretion being twice as great as when the one or the other is laid on the surface of a single lobe; and as the two lobes come into almost close contact the secretion, containing dissolved animal matter, diffuses itself by capillary attraction, causing fresh glands on both sides to begin secreting in a continually widening circle. The secretion is almost colorless, slightly mucilaginous, moderately acid, and so copious at times in the furrow over the mid-rib as to trickle down to the earth. But all this secretion is for the purposes of digestion. Be the animal matter which the enclosed object yields ever so little, it serves as a peptogene, and the glands on the surface of the leaf pour forth their acid discharge, which acts like the gastric juice of animals.

    VENUS’S FLY-TRAP.

    How It Captures Insects.

    Now as to the manner in which insects are caught by the leaves of Dionæa muscipula. In its native country they are caught in large numbers, but whether they are attracted in any special way no one seems to know. Both lobes close with astonishing quickness as soon as a filament is touched, and as they stand at less than a right angle to each other, they have an excellent chance of capturing any intruder. The chief seat of the movement is near the mid-rib, but is not restricted to this part. Each lobe, when the lobes come together, curves inwards across its whole breadth, the marginal spikes alone not becoming curved. From the curving inwards of the two lobes, as they advance towards each other, the straight marginal spikes intercross by their apices at first, and ultimately by their bases. The leaf is then completely shut and encloses a shallow cavity. If made to shut merely by the touching of one of the sensitive filaments, or by the inclusion of an object not yielding soluble nitrogeneous matter, the two lobes retain their inwardly concave form until they re-expand. The re-expansion, when no organic matter is enclosed, varies according to circumstances, a leaf in one instance being fully re-expanded in thirty-two hours.

    But the lobes, when soluble nitrogeneous matter is included, instead of remaining concave, thus containing within a concavity, slowly press closely together throughout their entire breadth, and as this takes place the margins gradually become a little everted, so that the spikes, which at first intercrossed, at last project in two parallel rows. So firmly do they become pressed together that, if any large insect has been caught, a corresponding projection is clearly visible on the outside of the leaf. When the two lobes are thus completely closed, they resist being opened, as by a thin wedge driven with astonishing force between them, and are generally ruptured rather than yield. If not ruptured, they close again with quite a loud flap. The slow movement spoken of, excited by the absorption of diffused animal matter, suffices for its final purpose, whilst the movement brought on by the touching of one of the sensitive filaments is rapid, and thus indispensable for the capturing of insects.

    Leaves remain shut for a longer time over insects, especially if the latter are large, than over meat. In many instances where they have remained for a long period over insects naturally caught, they were more or less torpid when they reopened, and generally so much so during many succeeding days that no excitement of the filaments caused the least movement. Vigorous leaves will sometimes devour prey several times, but ordinarily twice, or, quite often, once is enough to render them unserviceable.

    What purpose the marginal spikes, which form so conspicuous a feature in the appearance of the plant, subserve was unknown until the genius of Darwin solved the mystery. It was he that showed that elongated spaces between the spikes, varying from one-fifteenth to one-tenth of an inch in breadth according to the size of the leaf, are left open for a short time before the edges of the lobes come into contact, consequent upon the intercrossing of the tips of the marginal spikes first, thus enabling an insect whose body is not thicker than these measurements to escape, when disturbed by the closing lobes and the increasing darkness, quite easily between the crossed spikes. Moderately sized insects, if they try to escape between the bars, will be pushed back into the horrid prison with the slowly closing walls, for the spikes continue to close more and more until the lobes are brought into contact. Very strong insects, however, manage to effect their release. It would manifestly be a great disadvantage to the plant to remain many days clasped over a minute insect, and as many additional days or weeks in recovering its sensibility, inasmuch as a very small insect would afford but little nourishment. Far better would it be for the plant to wait until a moderately large insect was captured, and to allow the little ones to escape, and this advantage is gained by the slow intercrossing of the marginal spikes, which, acting like the large meshes of a fishing-net, allow the small and worthless fry to pass through.

    Touching any one of the six filaments is sufficient to cause both lobes to close, these becoming at the instant incurved throughout their entire breadth. The stimulus must therefore radiate in all directions from any one filament, and it must also be transmitted with considerable rapidity across the leaf, for in all ordinary cases, as far as the eye can judge, both lobes close at the same time. Physiologists generally believe that in irritable plants the excitement is transmitted along, or in close connection with, the fibro-vascular bundles. Those in Dionæa seem at first sight to favor this belief, for they run up the mid-rib in a great bundle, sending off small bundles almost at right angles on each side, which bifurcate occasionally as they stretch towards the margin, the marginal branches from adjoining branches uniting and entering the marginal spikes. Thus a continuous zigzag line of vessels runs round the whole circumference of the leaf, while in the mid-rib all the vessels are in close contiguity, so that all parts of the leaf seem to be brought into some degree of communication. The presence of vessels, however, is not necessary for the transmission of the motor impulse, for it is transmitted from the apices of the sensitive filaments, which are hardly one-tenth of an inch in length, into which no vessels are seen to enter. Slits made close to the bases of the filaments, parallel to the mid-rib, and thus directly across the course of the vessels, sometimes on the inner and sometimes on the outer sides of the filaments, do not interfere with the transmission of the motor impulse along the vessels, and conclusively show that there is no necessity for a direct line of communication from the filament, which is touched towards the mid-rib and opposite lobe, or towards the outer parts of the same lobe. With respect to the movement of the leaves, the wonderful discovery made by Dr. Burdon Sanderson, and published in 1874, offers an easy explanation. There is, says this distinguished authority, a normal electrical current in the blade and footstalk, which, when the leaves are irritated, is disturbed in the same manner as is the muscle of an animal when contraction takes place.

    After contraction has endured for a greater or less time, dependent upon circumstances which we do not well understand, re-expansion of the leaves is effected at an insensibly slow rate, whether or not any object is enclosed, both lobes opening in all ordinary cases at the same time, although each lobe may act to a certain extent independently of the other. The re-expansion is not determined by the sensitive filaments, for these may be cut off close to their bases, or be entirely removed, and re-expansion occur in the usual manner. It is believed that the several layers of cells forming the lower surface of the leaf are always in a state of tension, and that it is owing to this mechanical state, aided probably by fresh fluid being drawn into the cells, that the lobes begin to separate as soon as the contraction of the upper surface diminishes.

    Six known genera, Drosophyllum, Roridula, Byblis, Drosera, Dionæa and Aldrovanda comprise the Droseraceæ, all of which capture insects. The first three genera effect this purpose solely by the viscid fluid secreted from their glands, and the last, like Dionæa, which has already been described, through the closing of the blades of the leaf. In these last two genera rapid movement makes up for the loss of viscid secretion. But of all the genera none is more interesting than the typical Sundews.

    Growing in poor peaty soil, and sometimes along the borders of ponds where nothing else can grow, certain low herbaceous plants, called Droseras, abound. So small and apparently insignificant are they, that to the ordinary observer they are almost unnoticed. But they have peculiarities of structure and nature that readily distinguish them. Scattered thickly over their leaves are reddish bristles or tentacles, each surmounted by a gland, from which an extremely viscid fluid, sparkling in the sunlight like dew, exudes in transparent drops. Hence the common name of Sundew by which the half-dozen species found in the United States east of the Mississippi River are known. A one-sided raceme, whose flowers open only when the sun shines, crowns a smooth scape, which is devoid of tentacles. Drosera rotundifolia, our commonest species, has a wide range, being indigenous to both Europe and America. In the United States it extends from New England to Florida and westward, and is occasionally associated with Drosera longifolia, a form with long strap-shaped leaves, but whose distribution is mostly restricted to maritime regions, from Massachusetts to Florida.

    ROUND-LEAVED SUNDEW.

    Leaves Acting as Stomachs.

    All of the species are remarkably similar in habits, capturing insects, and digesting and absorbing the soft parts, a circumstance which explains how these plants can flourish in an extremely poor soil where mosses, which depend almost entirely upon the atmosphere for their nourishment, only can live. Although the leaves of the Droseras at a hasty glance do not appear green, owing to the purple color of the tentacles, yet the superior and inferior surfaces of the blade, the stalks of the central tentacles, and the petioles contain chlorophyll, rendering the best of evidence that the plants obtain and assimilate carbon dioxide from the air. But when the poverty of the soil where these plants grow is considered, it is at once apparent that their supply of nitrogen would be exceedingly small, or quite deficient, unless they had the power of obtaining it from some other source. From captured insects this important element is largely obtained, and thus we are prepared to understand how it is that their roots, which consist of only two or three slightly divided branches, from one-half to one inch in length, and furnished with absorbent hairs, are so poorly developed. From what has been stated it would seem that the roots but serve to imbibe water, but there is no doubt that nutritious matters would also be absorbed were they present in the soil.

    With the edges of its leaves curled so as to form a temporary stomach, and with the glands of its closely-inflected tentacles pouring forth their truly acid secretion, which dissolves animal matters that are subsequently absorbed, Drosera may be said to feed like an animal. But, unlike an animal, it drinks by means of its roots, and largely, too, for it would not be able to supply its glands with the necessary viscid fluid. The amount needed is by no means an inconsiderable quantity, as two hundred and seventy drops may sometimes be exposed during a whole day to a glaring sun. Such a profuse exudation implies preparations for hosts of insect visitors. In this Drosera has not miscalculated. Its bright pink blossoms and brilliant, glistening dew lure vast numbers of the smaller kinds, and the larger ones, too, to certain death. But the wholesale destruction of life that goes on is much in excess of what the plant requires for food. While the smaller flies remain adherent to the leaves, affording them the needed aliment, the larger insects, after death, fall around the roots, where they decay and fertilize the soil with nitrogen, which doubtless through the proper channels makes its way into the body of the plant, thus helping to give it tone and vigor. There are times when these plants work better than at others, but whether this is caused by the electrical condition of the atmosphere, or the amount of its contained moisture, is a question which science has not positively determined.

    Drosera longifolia folds it leaves entirely around its victim, from the apex down to the petiole after the manner of its vernation, but in Drosera rotundifolia, whose marginal tentacles are longer, the tentacles simply curve around the object, the glands touching the substance, like so many mouths receiving nourishment. Experimented upon with raw beef, the tentacles of healthy leaves, from within to without, but in periods of time varying from six to eight or nine hours, clasp firmly the beef, almost concealing it from view. Equally vigorous leaves, however, made no move towards clasping a bit of dry chalk, a chip of flint, or a lump of earth. Bits of raw apple cause a curving of the tentacles, but very few of the glands are seen touching them. It would seem, therefore, that these plants are really carnivorous, preferring animal substances, which they, by the aid of some ferment analogous to pepsin, which is secreted by the glands, are able to absorb. A minute quantity of already soluble animal matter is the exciting cause, and this must be taken in by the glands, or there is no secretion of the fermenting material.

    In all ordinary cases the glands alone are susceptible to excitement. When excited, they do not themselves move or change form, but transmit a motor impulse to the bending part of their own and adjoining tentacles, and are thus carried towards the centre of the leaf. Stimulants applied to the glands of the short tentacles on the disc indirectly excite movement of the exterior tentacles, for the stimulus of the glands of the disc acts on the bending part of the latter tentacles, near their bases, and does not first travel up the pedicels to the glands, to be then reflected back to the bending place. Some influence, however, does travel up to the glands, causing them to secrete most copiously,

    Enjoying the preview?
    Page 1 of 1