Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Circulation November 21, 2017 Issue

Circulation November 21, 2017 Issue

FromCirculation on the Run


Circulation November 21, 2017 Issue

FromCirculation on the Run

ratings:
Length:
18 minutes
Released:
Nov 20, 2017
Format:
Podcast episode

Description

Dr. Carolyn Lam:               Welcome to Circulation on the Run. Your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr. Carolyn Lam, Associate Editor from the National Heart Center and Duke National University of Singapore. This week's journal features novel results from the NCDR IMPACT Registry that informs us on risk prediction in patients with congenital heart disease undergoing cardiac catheterization. We'll be taking a deep dive into this right after these summaries.                                                 The first original paper provides pre-clinical data showing that delayed repolarization may underlie ventricular arrhythmias in heart failure with preserved ejection fraction or HFpEF. First author Dr. Cho, co-corresponding authors Dr. Marban, and Cingolani from Cedars-Sinai Heart Institute and their colleagues, induced HFpEF in Dahl salt-sensitive rats by feeding them a high-salt diet from seven weeks of age. They showed that susceptibility to ventricular arrhythmias was markedly increased in rats with HFpEF.                                                 Underlying abnormalities included QTc prolongation, delayed repolarization from down-regulation of potassium currents, and multiple re-entry circuits during ventricular arrhythmias. These findings are consistent with the hypothesis that potassium current down-regulation may lead to abnormal repolarization in HFpEF, which in turn predisposes to ventricular arrhythmias and sudden cardiac death.                                                 The next paper shows that genetic testing can help to identify patients with pulmonary veno-occlusive disease who were misclassified as pulmonary arterial hypertension. Now, heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type II or BMPR2 are the commonest genetic cause of pulmonary arterial hypertension. Whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene or EIF2AK4 gene are described in pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis.                                                 In the current study, first author Dr. Hadinnapola, corresponding author Dr. Morrell, and colleagues from University of Cambridge performed whole genome sequencing on the DNA from 864 patients with pulmonary arterial hypertension, as well as 16 patients with pulmonary veno-occlusive disease all recruited to the NIHR BioResource – Rare Diseases study. They found that 1% of patients with a clinical diagnosis of pulmonary arterial hypertension actually carry the biallelic EIF2AK4 mutations. Patients who are diagnosed clinically with pulmonary arterial hypertension, but who had a transfer coefficient for carbon monoxide of less than 50% predicted and an age of diagnosis of less than 50 years were much more likely to carry these biallelic EIF2AK4 mutation. In fact, the diagnostic yield for genetic testing in this group was 53%.                                                 Radiological assessment alone was unable to distinguish reliably between these patients and those with idiopathic pulmonary arterial hypertension. Importantly, these patients with biallelic EIF2AK4 mutations had a worst prognosis compared to other patients with pulmonary arterial hypertension. Thus in summary, younger patients diagnosed with idiopathic pulmonary arterial hypertension but with a low transfer coefficient for carbon monoxide, have a high frequency of biallelic EIF2AK4 mutations and should be reclassified as pulmonary veno-occlusive disease or pulmonary capillary hemangiomatosis. They have a poor prognosis and genetic testing can therefore identify these misclassified patients allowing appropriate management and early referral for lung transplantation.                                                 The next study identifies a novel molecular target for the treatment of pathological cardiac hypertrophy. This target is SIRT
Released:
Nov 20, 2017
Format:
Podcast episode

Titles in the series (100)

Each 15-minute podcast begins with an overview of the issue’s contents and main take-home messages for busy clinicians on the run. This is followed by a deep dive into a featured article of particular clinical significance: views will be heard from both author and editor teams for a “behind the scenes” look at the publication. Expect a fun, highly conversational and clinically-focused session each week!