Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Circulation September 18, 2018 Issue

Circulation September 18, 2018 Issue

FromCirculation on the Run


Circulation September 18, 2018 Issue

FromCirculation on the Run

ratings:
Length:
19 minutes
Released:
Sep 18, 2018
Format:
Podcast episode

Description

Dr Carolyn Lam:                Welcome to Circulation on the Run, your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr Carolyn Lam, associate editor from the National Heart Center and Duke National University of Singapore. This week's journal features two papers that deal with genetic testing in young athletes and for sudden arrhythmic death, and with findings that may surprise you. They really show the complexities of this era of genetic testing and cardiovascular medicine, and in fact are discussed as growing pains in cardiovascular genetics. You must listen to our feature discussion, which is coming right up after these summaries.                                                 The first original paper this week suggests that targeting fibronectin polymerization may be a new therapeutic strategy for treating cardiac fibrosis. Fibronectin polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblast following cardiac injury. In today's paper, first author Dr Valiente-Alandi, corresponding author Dr Blaxall from University of Cincinnati College of Medicine and Heart Institute, and their colleagues hypothesized that interfering with fibronectin polymerization, or its genetic ablation and fibroblasts, would attenuate myocardial fibrosis and improve cardiac function following ischemia reperfusion injury. Using mouse and human cardiac myofibroblasts, authors found that the fibronectin polymerization inhibitor pUR4 attenuated the pathological phenotype exhibited by mouse and human myofibroblasts by decreasing fibronectin polymerization and collagen deposition into the extracellular matrix as well as by myofibroblast proliferation and migration.                                                 Inhibiting fibronectin matrix deposition by pUR4 treatment or by deleting fibronectin gene expression in cardiac fibroblasts confirmed cardioprotection against ischemia reperfusion-induced injury by attenuating at first left ventricular remodeling and cardiac fibrosis, thus preserving cardiac function. In summary, interfering with fibronectin polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.                                                 The Insulin Resistance Intervention after Stroke, or IRIS trial, demonstrated that pioglitazone reduced the risk of both cardiovascular events and diabetes in insulin-resistant patients. However, concern remains that pioglitazone may increase the risk of heart failure in susceptible individuals. To address this, Dr Young from Yale Cardiovascular Research Center and the IRIS investigators performed a secondary analysis of the IRIS trial. They found that older age, atrial fibrillation, hypertension, obesity, edema, high CRP, and smoking were risk factors for heart failure.                                                 Pioglitazone did not increase the risk of incident heart failure, and the effect of pioglitazone did not differ across levels of baseline risk. It should however be noted that in the IRIS trial, the study drug dose could be reduced for symptoms of edema or excessive weight gain, which occurred more often in the pioglitazone arm. Overall, pioglitazone reduced the composite outcome of stroke, MI, or hospitalized heart failure in the IRIS trial.                                                 The next study highlights the importance of genetic variation in cardiac fibrosis and suggests that while fibroblast activation is a response that parallels the extent of scar formation, proliferation may not necessarily correlate with levels of fibrosis. In this paper from co-first authors Dr Park and Ranjbarvaziri, corresponding author Dr Ardehali, from David Geffen School of Medicine, University of California, Los Angeles, the authors utilized a novel multiple-strain approach known as the Hybrid Mouse Diversity Panel to characterize the contributions of
Released:
Sep 18, 2018
Format:
Podcast episode

Titles in the series (100)

Each 15-minute podcast begins with an overview of the issue’s contents and main take-home messages for busy clinicians on the run. This is followed by a deep dive into a featured article of particular clinical significance: views will be heard from both author and editor teams for a “behind the scenes” look at the publication. Expect a fun, highly conversational and clinically-focused session each week!