Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $11.99/month after trial. Cancel anytime.

The life of Isambard Kingdom Brunel, Civil Engineer
The life of Isambard Kingdom Brunel, Civil Engineer
The life of Isambard Kingdom Brunel, Civil Engineer
Ebook876 pages12 hours

The life of Isambard Kingdom Brunel, Civil Engineer

Rating: 0 out of 5 stars

()

Read preview
LanguageEnglish
Release dateNov 27, 2013
The life of Isambard Kingdom Brunel, Civil Engineer

Related to The life of Isambard Kingdom Brunel, Civil Engineer

Related ebooks

Related articles

Reviews for The life of Isambard Kingdom Brunel, Civil Engineer

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    The life of Isambard Kingdom Brunel, Civil Engineer - Isambard Brunel

    The Project Gutenberg EBook of The life of Isambard Kingdom Brunel, Civil

    Engineer, by Isambard Brunel

    This eBook is for the use of anyone anywhere at no cost and with

    almost no restrictions whatsoever.  You may copy it, give it away or

    re-use it under the terms of the Project Gutenberg License included

    with this eBook or online at www.gutenberg.org/license

    Title: The life of Isambard Kingdom Brunel, Civil Engineer

    Author: Isambard Brunel

    Release Date: October 28, 2012 [EBook #41210]

    Language: English

    *** START OF THIS PROJECT GUTENBERG EBOOK THE LIFE OF I K BRUNEL ***

    Produced by Chuck Greif and the Online Distributed

    Proofreading Team at http://www.pgdp.net (This file was

    produced from images available at The Internet Archive)


    Painted by J. C. Horsley, R.A.—Engraved by T. O. Barlow.

    [Larger view]

    [Largest view]

    THE   LIFE

    OF

    ISAMBARD   KINGDOM   BRUNEL,

    CIVIL ENGINEER.

    BY

    I S A M B A R D   B R U N E L,   B.C.L.,

    OF LINCOLN’S INN;

    CHANCELLOR OF THE DIOCESE OF ELY.

    LONDON:

    LONGMANS, GREEN, AND CO.

    1870.

    PREFACE.

    I HAVE NOT attempted to describe the events of my father’s life in chronological order beyond the end of Chapter III., which brings down the narrative to the close of 1835, the year in which the Act was obtained for the Great Western Railway.

    Chapter IV. contains a general account of my father’s railway works, with the exception of the Bridges, which are described in Chapter VII. The history of the Broad Gauge and of the trial of the Atmospheric System on the South Devon Railway is given in Chapters V. and VI.

    Chapters VIII.—XIII. contain an account of my father’s labours for the advancement of Ocean Steam Navigation. It will be noted that these chapters cover the same period as Chapters IV.—VII., namely, from 1835, the year of the commencement of the Great Western Railway and the ‘Great Western’ Steam-ship, to 1859, the year of his death, in which the Saltash Bridge and the ‘Great Eastern’ were both completed.

    Chapters VII. (on the Bridges) and XIV. (on the Docks) have been written by Mr. William Bell, for many years a member of my father’s engineering staff; and in regard to Chapter V. (on the Broad Gauge), I have to acknowledge assistance rendered me by Mr. William Pole, F.R.S.

    For the Note on the Carbonic Acid Gas Engine which follows Chapter I., I am indebted to Mr. William Hawes; and for Chapter VI. (on the Atmospheric System) to Mr. Froude, F.R.S.

    I have also printed letters, written to me at my request, relating to various incidents in my father’s life.

    The assistance I received in the preparation of the chapters on Steam Navigation from my friend the late Captain Claxton, R.N., has been referred to in the note to p. 234.

    I have throughout availed myself of my brother’s professional knowledge.

    I have been compelled, in order to bring the work within the compass of a single volume, to omit much that would otherwise have been inserted, and I must therefore be held responsible for the general arrangement of those parts which have been contributed by others, as well as for the chapters which I have written myself.

    Lastly, I desire gratefully to thank those friends who, by supplying me with materials and revising the proof sheets, have helped me in my endeavour to make this book, as far as possible, an accurate record of my father’s life, written in the spirit of which he would have approved.

    I. B.

    18 Duke Street, Westminster

    :

    November, 1870.

    CONTENTS

    LIST

    OF

    REPORTS AND OTHER ORIGINAL DOCUMENTS.

    LIST

    OF

    ILLUSTRATIONS.

    LIFE

    OF

    ISAMBARD KINGDOM BRUNEL.

    CHAPTER I.

    EARLY LIFE.

    A.D. 1806—1828.

    BIRTH OF MR. BRUNEL, APRIL 9, 1806—SIR MARC ISAMBARD BRUNEL—THE BLOCK MACHINERY—MR. BRUNEL’S SCHOOL LIFE—THE THAMES TUNNEL—SINKING OF THE ROTHERHITHE SHAFT—DESCRIPTION OF THE SHIELD—EXTRACTS FROM SIR ISAMBARD BRUNEL’S JOURNALS FROM THE COMMENCEMENT OF THE THAMES TUNNEL TO THE DATE OF THE SECOND IRRUPTION OF THE RIVER, JANUARY 12, 1828—NOTE A: THE BOURBON SUSPENSION BRIDGES—NOTE B: EXPERIMENTS WITH CARBONIC ACID GAS.

    Isambard Kingdom Brunel was born on the ninth day of April, 1806, at Portsmouth, and was the only son of Sir Marc Isambard Brunel.[1]

    Most biographies commence with an account of the parentage of the person whose life is about to be written. If this be permitted in any case, no apology can be needed for prefixing to a Life of Mr. Brunel some particulars of his father’s career, since he was indebted to him, not only for the inheritance of many natural gifts, and for a professional education such as few have been able to procure, but also for a bright example of the cultivation of those habits of forethought and perseverance, which alone can ensure the successful accomplishment of great designs.

    Sir Marc Isambard Brunel was a native of Hacqueville, a village in Normandy, where his family had been settled for several generations. He was originally intended for the priesthood; but, as he showed no inclination for that calling, and a very decided talent for mechanical pursuits, he was permitted to enter the French Navy; and he served in the West Indies for six years, namely, from 1786 to 1792. On his return home, at the expiration of his term of service, his strong Royalist sympathies made it unsafe for him to remain in France, and with great difficulty he managed to escape to America. He landed at New York in September 1793, and soon obtained employment as a civil engineer. A few years afterwards he was appointed engineer to the State of New York; and, while holding that office, he designed a cannon foundry and other important public works.

    In January 1799, when Sir Isambard was in his thirtieth year, he came over to England, and shortly after his arrival married Miss Sophia Kingdom, a lady for whom he had formed an attachment some years before.[2]

    The first great work undertaken by him in this country was the machinery for making blocks, which he designed and erected for Government at Portsmouth.

    The history of the invention and construction of this system of machinery (for it consisted of forty-three separate machines) need not be given at length; but it may be permitted to extract the following passage from Mr. Beamish’s ‘Life of Sir Isambard Brunel’ (pp. 97, 99, 2nd edition), in which he points out the benefits which have resulted from its introduction, and the position its inventor is entitled to hold among those who have contributed to the progress of mechanical science.

    Where fifty men were necessary to complete the shells of blocks previous to the erection of Brunel’s machinery, four men only are now required, and to prepare the sheaves, six men can now do the work which formerly demanded the labours of sixty. So that ten men, by the aid of this machinery, can accomplish with uniformity, celerity, and ease, what formerly required the uncertain labour of one hundred and ten.

    When we call to mind that at the time these works were executed, mechanical engineering was only in its infancy, we are filled with amazement at the sagacity and skill that should have so far anticipated the progress of the age, as to leave scarcely any room, during half a century, for the introduction of any improvement....

    Beautiful as are the combinations and contrivances in the block machinery, and highly deserving as the inventor may be of credit for originating such labour-saving machines for the production of ships’ blocks, there is a far higher claim to the admiration and gratitude of all constructors of machinery, and of all workers in metal. In this block machinery exist the types and examples of all the modern self-acting tools, without the aid of which the various mechanical appliances of the present day could not be produced with the marvellous accuracy which has been attained. It is true that to the trades unions or combinations among the artisans, is in a great measure directly due the introduction of self-acting machines; but the types of all these tools existed in the machines and combinations of Brunel’s block machinery. The drilling, the slotting, and the shaping machines, the eccentric chuck, and the slide rest, with the worm wheel motion, are all to be found in his machine.

    On the completion of the block machinery Sir Isambard Brunel removed to London, and took a house in Lindsay Row, Chelsea, where he remained until he was obliged to live nearer the works of the Thames Tunnel.

    Mr. Brunel’s first recollections were of the house at Chelsea; and in 1814, when he was eight years old, he commenced his school life under the Rev. Weeden Butler, who resided in the neighbourhood. Previously to his going to Mr. Butler, he had been taught Euclid by Sir Isambard; and he had also a great talent for drawing, for which he had been remarkable even from four years old. His drawings were beautifully precise and neat, but, when the subject admitted of it, full of vigour and picturesque effect.

    After some time he was sent to Dr. Morell’s school at Hove, near Brighton. The following extract is taken from one of his letters home in 1820:—

    I have past Sallust some time, but I am sorry to say I did not read all, as Dr. Morell wished me to get into another class. I am at present reading Terence and Horace. I like Horace very much, but not as much as Virgil. As to what I am about, I have been making half a dozen boats lately, till I have worn my hands to pieces. I have also taken a plan of Hove, which is a very amusing job. I should be much obliged to you if you would ask papa (I hope he is quite well and hearty), whether he would lend me his long measure. It is a long eighty-foot tape; he will know what I mean. I will take care of it, for I want to take a more exact plan, though this is pretty exact, I think. I have also been drawing a little. I intend to take a view of all (about five) the principal houses in that great town, Hove. I have already taken one or two.

    In the intervals of his classical studies he seems to have employed himself, not only in making a survey of Hove in its existing state, but also in a critical examination of the works in progress for its enlargement. It is told of him that one evening he predicted the fall, before the next morning, of some houses which were building opposite the school, and laid a bet on the subject, which his companions readily accepted. He had noticed the bad way in which the work was done, and that the stormy weather, which appeared to be setting in for the night, would probably blow the walls down. In the morning he claimed the wager, for the buildings had fallen in the night.

    Except from November 1820 to August 1822, when he was at the Collége Henri Quatre at Paris,[3] Mr. Brunel was so very little absent from home that he became thoroughly acquainted with all his father’s undertakings. Among these was the veneering machinery at Battersea, remarkable for the great diameter of the saw, the steadiness of its motion, and the mechanical arrangements for clearing the veneer from the saw; also the works at the Government establishments at Woolwich and Chatham, and the machinery for making shoes. They have been fully described by Mr. Beamish; but the mere mention of their names is enough to show how great were the advantages enjoyed by Mr. Brunel in receiving from his father his early professional education.

    From the year 1823 Mr. Brunel was regularly employed in his father’s office. It was in the early part of this year that the project of the Thames Tunnel first began to occupy Sir Isambard’s attention; but he was also engaged at that time in other works of great importance, among them the suspension bridges for the Ile de Bourbon, and designs for bridges of the same character over the Serpentine, and over the Thames at Kingston.[4] Some account of the Bourbon bridges, and also of experiments with carbonic acid gas, on which Mr. Brunel was engaged, will be found in the notes to this chapter.

    The history of the Thames Tunnel will be told, as far as possible, in Sir Isambard Brunel’s own words, as given in his journals.[5] Although these extracts do not relate to works for which Mr. Brunel was personally responsible, they have been inserted in the belief that they are valuable, not only as showing the nature and extent of his duties as his father’s assistant, but also as displaying, in the most interesting and authentic form, Sir Isambard’s character and genius at a time when his son was brought into hourly contact with him, and under circumstances which would cause the influence of his example to make a deep and lasting impression.

    Previously to the year 1823 there had been several plans suggested for the construction of a tunnel under the Thames; and it would seem that a great demand was supposed to exist for some such means of communication between the two sides of the river eastward of London Bridge; for after the failure of the operations undertaken by Mr. Vasie in 1805, and Mr. Trevethick in 1807,[6] a high level suspension bridge was proposed, although it was not intended to be used for heavy traffic.[7]

    The first reference to the Tunnel in Sir Isambard’s journals is dated February 12, 1823. ‘Engaged on drawings connected with Tunnel;’ and on the 17th and following days of the same month, ‘Isambard was engaged on Tunnel.’ These entries become more and more frequent in the pages of his diary, until it is evident that Sir Isambard’s whole time and thoughts were absorbed in this work.

    The spring of 1823 was occupied in preparing drawings and models of his plans, and in enlisting the sympathy and assistance of various influential persons. By the close of the year the designs were matured sufficiently to enable the promoters of the scheme to commence the task of organising a company for carrying it out; and in January 1824 they resolved to call a general meeting of their friends, and invite public subscriptions.

    On February 17, Sir Isambard explained his plans at the Institution of Civil Engineers, and on the next day a meeting was held at the City of London Tavern, under the presidency of Mr. William Smith, M.P., more than a hundred persons being present. Resolutions authorising the formation of a company were passed unanimously, and the share list was opened. In the course of an hour one-third of the subscriptions was filled up, namely, 1250 shares; and before the end of the day the number of shares taken was 1381.

    Borings were then commenced in order to ascertain the nature of the strata through which the Tunnel would pass. A bed of gravel was found over the clay, which gave Sir Isambard great anxiety. A large pipe or shaft was sunk on the side of the river, and in it the water rose to within three feet of the surface of the ground, and fell about eighteen inches with the tide. ‘It is manifest (Sir Isambard writes) from this that unless the Tunnel is enclosed in the stratum of clay, it would be unsafe to drive through the bed of gravel. The Tunnel must, therefore, begin with the substantial clay.’

    However, the result of thirty-nine borings in two parallel lines across the river, to the depth of from 23 to 37½ feet, seemed to prove that there was below the gravel a stratum of strong blue clay of sufficient depth to ensure the safety of the Tunnel.[8]

    A report to this effect was made to the shareholders at their first general meeting in July, and it was also stated that the works would be completed in three years.

    The first operation connected with the works, was the constriction of a shaft; and for this purpose land was bought on the Rotherhithe bank, about fifty yards from the river. On March 2, 1825, the ceremony of laying the first stone of the shaft was performed.

    Mr. Smith, our chairman, attended by most of the members of the Court of Directors, and a very numerous cortége of friends invited on the occasion, proceeded from the Tunnel Wharf to the ground, where they were received among the cheers of a great concourse of people. Mr. Smith addressed the assembly in a very eloquent speech suitable to the occasion, and performed the ceremony of laying the first stone. From this day dates the beginning of the work.[9]

    The mode in which Sir Isambard decided to construct the shaft was one not uncommonly adopted in the construction of wells; but to apply it to sinking a shaft fifty feet in diameter was a novel and bold undertaking. The brickwork intended to form the lining of the shaft was built on the surface of the ground, and the earth being excavated from within and underneath the structure, it sank gradually down to its final position.

    The brickwork was 3 feet thick, bound together by iron and timber ties, and there were built into it 48 perpendicular iron rods, one inch in diameter, fastened to a wooden curb at the bottom, and to another curb at the top of the wall, by nuts and screws.

    When the shaft or tower of brickwork was completed up to the top, 42 feet in height, the next step was to remove the blockings on which it rested, and this being done the gravel was excavated and hoisted up, and the shaft descended by its own weight.

    The Rotherhithe shaft was only sunk forty feet in this manner; the remaining twenty feet, in order to leave the opening for the Tunnel, was constructed by under-pinning, or underlaying, as it was then termed. The underlaying was commenced in the beginning of June.[10]

    By July 4 they had got down to the level of the intended foundation of the shaft, having passed into a stratum of gravel, black pebbles embedded in greenish sand, with little or no water; from which circumstance Sir Isambard was of opinion that it was unconnected with the stratum of gravel above.

    July 12.—Engaged on a general drawing for the great shield, and in preparing some instructions for moving the same (a very intricate operation!)

    July 22.—Underlaying is a very laborious mode of proceeding. The sinking of a wall well bound as the first, would evidently be the best and cheapest mode for making another tower of 50 feet diameter.

    On the 28th Sir Isambard enters in his journal the following additional observations upon the success of his plans for sinking the shaft:—

    Considering the great labour necessary for securing the ground for the underlaying, the waste of planking, and of shores, and the time necessarily taken up in moving about, in securing and in baling out the water, and the many causes of interruption, and the imperfect way that things are done in underlaying, it is quite conclusive that the original plan of making a shaft, by sinking the structure, is the safest and the most economical. What is done is sound, and when once in place, may be secured with foundations in a very easy manner. The brickwork of the shaft is remarkably hard. Had it been made with brick facings and rubble stone, it would certainly be water-tight, and almost impenetrable by ordinary ways. The vertical ties and the circular wall bands are not to be dispensed with in a structure destined to be moved as the present has been.

    On August 11 the underlaying was completed, and preparations were made for constructing a reservoir in the bottom of the shaft for receiving the permanent pumps. This was finished on October 11, with great difficulty, owing to the nature of the ground, which consisted of loose sand containing a large quantity of water.

    August 19.—Engaged at home in revising my plans for the manner of carrying on the horizontal excavation, more particularly of penetrating through the shaft. This part of the operation requires indeed very great attention, as it presents great difficulties, arising from the wall to be broken through, and chiefly from the angular opening that is to be made at each extremity. Then another consideration is the uniting the brick arches to the brickwork of the shaft.

    September 16.—Engaged in the early part of the day on revising my plans of future operations in the Tunnel work, and in adapting them to the nature of the ground as it is found at the various depths we have penetrated: namely, to about 73 feet. Went afterwards to Maudslay to request that the great shield may be completed.

    Great shield.

    October 14.—Engaged in the early part of the morning in making some arrangements for the working of the great shield. Too much attention cannot be given to that subject at the early part; for, when once in its place, it would be extremely inconvenient to make any alteration.

    Preparing for the frames.

    October 15.—The dome of the reservoir will be covered to-day about noon; the bottom of the shaft will therefore be completed. They are now preparing to apply two frames of the shield. The ground now open in the front is remarkably hard; it consists of pebbles imbedded in a chalky substance, with hard loose stones of the nature of the Kentish rag. Everything is going on well. Devised with Isambard how to make our wells for the descent of the materials, &c.

    Thus at last the shaft was completed, and Sir Isambard was able to commence the Tunnel itself, which he ultimately determined to construct in the form of a rectangular mass of brickwork, 37½ feet wide and 22 feet high, pierced by two parallel horseshoe archways, each 14 feet wide and 17 feet high.

    Before entering upon the history of this undertaking, some account must be given of the machine which Sir Isambard Brunel devised for effecting its accomplishment.

    In order to avoid a quicksand of considerable depth and extent, the Tunnel had to be carried but a short distance below the bed of the river; and, as in all tunnelling through soft soil,[11] the top and sides of the excavation had to be supported until the brickwork was built in; and the front or face had also to be held up as the miners advanced. This support was given by means of a machine called ‘the shield,’ described on one occasion by Sir Isambard as ‘an ambulating cofferdam, travelling horizontally.’[12]

    The main body of the shield consisted of twelve independent structures or ‘frames’ made of cast and wrought iron. They were each 22 feet high, and rather more than 3 feet wide; and, when placed side by side, like books on a shelf, against the face of the excavation, they occupied the whole area of the face, and also the top, bottom, and sides for 9 feet in advance of the brickwork. Each frame stood on two feet resting on the ground, and was divided in its height into three cells by cast-iron floors. In these cells, of which there were thus thirty-six in all, the miners stood, and worked at the ground in front of them.

    The duty which the shield had to perform was to support the ground until the brickwork was built within the excavation; but it was essential that this should be done in such a manner as to allow of the mining operations being carried on; and it was also necessary that the machine itself should be capable of being moved forward.

    The first point, therefore, which has to be explained in the action of the shield is the manner in which the earth was supported by it.

    It has been already stated that each frame rested upon two feet, or large iron plates. These two feet together covered the ground under the frame to which they belonged, and thus the whole of the earth beneath the frames was pressed down by the feet.

    The earth above was supported by narrow iron plates, called staves, laid on the heads of the frames parallel to the line of the Tunnel, the ends resting on the completed brickwork behind it. The earth at the sides was kept up by staves resting against the outermost frames.

    The arrangement for holding up the earth at the face of the excavation was necessarily of a more complicated character. Each frame supported a series of boards called poling-boards, by means of small screw-jacks or poling-screws, two to each poling-board, which abutted against the frames, and pressed the boards against the earth. The boards were 3 feet long, 6 inches wide, and 3 inches thick, and were arranged horizontally. These poling-boards, more than five hundred in number, covered the whole surface in front of the frames.

    To resist the backward thrust of the poling-screws against the frames, each frame was held forward by two large screws, one at the top of the frame, and the other at the bottom, abutting against the brickwork of the Tunnel. The brickwork was completed close up behind the shield as it advanced.

    The way in which the earth was excavated, and the shield moved forward, has now to be explained.

    The plates or staves which supported the ground at the top and sides of the shield were pushed forward separately by screw-jacks; but in order to advance the poling-boards in front, it was necessary that that portion of the ground against which they pressed should be removed.

    The miner, standing in his cell, took down one, or, at the most, two of the poling-boards, commencing at the top of the cell, and having excavated the earth a few inches in advance, replaced the poling-boards against the newly-formed face, pressing them against it with the poling-screws. Thus the excavation was carried on without depriving the ground of the support it received from the shield, except at the point where the miner was actually at work.

    The operation of advancing the frames was effected in the following way. When everything was ready for a move, one of the feet which carried the frames on jointed legs was lifted up, and advanced forward a few inches, and then pressed down on to the ground, until in its new position it again bore the weight of the frame. This done, the other foot was lifted, moved forward, and screwed down in the same manner, and then the frame itself was pushed ahead by means of the large abutting screws, which kept it top and bottom from being forced back on the brickwork.

    It is, however, evident that these abutting screws would have been unable to push on the frame, while the ground in front was pressing back the poling-boards against it; therefore, during the process of moving a frame, it had to be relieved from

    Enjoying the preview?
    Page 1 of 1