Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Label-free digital holotomography reveals ibuprofen-induced morphological changes to red blood cells

Label-free digital holotomography reveals ibuprofen-induced morphological changes to red blood cells

FromPaperPlayer biorxiv cell biology


Label-free digital holotomography reveals ibuprofen-induced morphological changes to red blood cells

FromPaperPlayer biorxiv cell biology

ratings:
Length:
20 minutes
Released:
Dec 14, 2022
Format:
Podcast episode

Description

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2022.12.13.519447v1?rss=1

Authors: Bergaglio, T., Bhattacharya, S., Thompson, D., Nirmalraj, P. N.

Abstract:
Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced nanoscopic shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM) enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on 3D and 4D refractive index tomograms and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membranes when aqueous solutions of ibuprofen were drop cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient but at high concentrations (1.5-3 mM) the spiculated RBC remained over a period of up to 1.5 hours. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order, but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide and aqueous solutions on RBCs showed zero spicule formation. Our work elucidates the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC
Released:
Dec 14, 2022
Format:
Podcast episode

Titles in the series (100)

Audio versions of bioRxiv and medRxiv paper abstracts