Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Recent metamathematical wonders and the question of arithmetical realism

Recent metamathematical wonders and the question of arithmetical realism

FromMCMP – Philosophy of Mathematics


Recent metamathematical wonders and the question of arithmetical realism

FromMCMP – Philosophy of Mathematics

ratings:
Length:
62 minutes
Released:
Apr 18, 2019
Format:
Podcast episode

Description

Andrey Bovykin (Bristol) gives a talk at the MCMP Colloquium (16 January, 2013) titled "Recent metamathematical wonders and the question of arithmetical realism". Abstract: Metamathematics is the study of what is possible or impossible in mathematics, the study of unprovability, limitations of methods, algorithmic undecidability and "truth". I would like to make my talk very historical and educational and will start with pre-Godelean metamathematics and the first few metamathematical scenarios that emerged in the 19th century ("Parallel Worlds", "Insufficient Instruments", "Absence of a Uniform Solution", and "Needed Objects Are Yet Absent"). I will also mention some metamathematical premonitions from the era before Gauss that are the early historical hints that a mathematical question may lead to a metamathematical answer, rather than a "yes" or "no" answer. (These historical quotations have recently been sent to me by a historian Davide Crippa.) Then I am planning to sketch the history and evolution of post-Godelean metamathematical ideas, or, rather, generations of ideas. I split post-Godelean history of ideas into five generations and explain what people of each generation believed in (what are the right objects of study? what are the right questions? what are the right methods?). The most spectacular, and so far, the most important completed period in the history of metamathematics started in 1976 with the introduction of the Indicator Method by Jeff Paris and the working formulation of the Reverse Mathematics Programme by Harvey Friedman. I will describe this period (what people believed in that era) in some detail. We now live in a new period in metamathematics, quite distinct from the ideas of 1980s. I will speak about the question of universality of Friedman's machinery, the theory of templates, meaninglessnessisation (with an entertaining example of eaninglessnessisation), Weiermann's threshold theory and some new thoughts about the space of all possible strong theories. I will concentrate in most detail on the question of the Search for Arithmetical Splitting (the search for "equally good" arithmetical theories that contradict each other). and sketch some possible ways that may lead to the discovery of Arithmetical Splitting. There are people, who strongly deny the possibility of Arithmetical Splitting, most often under the auspices of arithmetical realism: "there exists the true standard model of arithmetic". They usually cite Godel's theorem as existence of ***true*** but unprovable assertions and concede only to some epistemological difficulties in reaching the "arithmetical truth". I will mention seven common arguments usually quoted by anti-Arithmetical-Splitting people and explain why it seems that all of these arguments don't stand. Historically and very tentatively, I would like to suggest that anti-Arithmetical-Splitting views should perhaps be considered not a viable anti-Pluralist philosophy of mathematics, but rather a conservative resistance to the inevitable new generation of metamathematical wonders. So anti-Arithmetical-Splitting views are more in line with such historical movements as "rejection of complex numbers", "resistance to non-Euclidean geometries in 1830s-1850s", and "refusal to accept concepts of abstract mathematics in the second half of the 19th century" and other conservative movements of the past. Arithmetical Splitting has not been reached yet, but we are well equipped to discuss it before its arrival.
Released:
Apr 18, 2019
Format:
Podcast episode

Titles in the series (22)

Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.