Nautilus

The Physics of Crowds

Why dangerous crowds behave the way they do. The post The Physics of Crowds appeared first on Nautilus.

In October 2022, 159 people died as crowd pressure caused a human pile-up in the Itaewon district of Seoul, South Korea. The victims were among an estimated 100,000 people celebrating Halloween in an area known for its active nightlife and narrow streets. With a tightly packed crowd, it would have taken only a single incident, such as a person stumbling, to initiate instability. The resulting wave of pressure quickly spread in a sloping alley some 12 feet wide, and people were crushed by the unrelenting force of others in the crowd.

This catastrophe was a national tragedy in South Korea, but it is not the largest such event. Documented fatal crushes stretch back through history. In 1896, a rush during a festival celebrating the coronation of Russian emperor Nicholas II killed more than 1,280 people. And in 2015, a crowd crush among 2 million Muslims attending the annual hajj to Mecca in Saudi Arabia left more than 2,000 people dead. In these cases, people panicked as they were squeezed by the crowd and could not escape. Though rare, these events are devastating and seem like they should be preventable—especially today.

When a disruption is coupled with high density, the results can quickly turn deadly.

The complex field of crowd science has long been working to understand how throngs can turn dangerous. It has borrowed from psychology and epidemiology, and now is also incorporating complex systems theory, physics, and physiology, combined with plentiful empirical data coupled with computer modeling. Scientists have even started turning their eyes toward the dangerous dynamics of virtual crowds.

Nautilus Members enjoy an ad-free experience. Log in or Join now.

We all have something to gain from this gathering field of science, because whether at a sports match,

You’re reading a preview, subscribe to read more.

More from Nautilus

Nautilus3 min read
A Buffer Zone for Trees
On most trails, a hiker climbing from valley floor to mountain top will be caressed by cooler and cooler breezes the farther skyward they go. But there are exceptions to this rule: Some trails play trickster when the conditions are right. Cold air sl
Nautilus6 min read
How a Hurricane Brought Monkeys Together
On the island of Cayo Santiago, about a mile off the coast of eastern Puerto Rico, the typical relationship between humans and other primates gets turned on its head. The 1,700 rhesus macaque monkeys (Macaca mulatta) living on that island have free r
Nautilus4 min read
Why Animals Run Faster than Robots
More than a decade ago a skinny-legged knee-less robot named Ranger completed an ultramarathon on foot. Donning a fetching red baseball cap with “Cornell” stitched on the front, and striding along at a leisurely pace, Ranger walked 40.5 miles, or 65

Related Books & Audiobooks