Futurity

Telescoping design would make awesome robots

A new design could let robots collapse themselves for transport or stretch around obstacles.

Researchers have created a way to design telescoping structures that can twist and bend, which could allow the creation of robots that collapse themselves to make transport easier or stretch out to reach over large obstacles.

The researchers devised algorithms that can take a suggested shape that includes curves or twists and design a telescoping structure to match. They also created a design tool that enables even a novice to create complex, collapsible assemblies, outlined in a new paper on the research.

The design possibilities range from something as practical as a rapidly deployable shelter to fanciful creations, such as a telescoping lizard with legs, head, and tail that readily retract.

telescoping lizard bot design
The researchers explored a number of designs in simulation, including shapes mimicking lizards and other animals. (Credit: Carnegie Mellon)

“Telescoping mechanisms are very useful for designing deployable structures,” says Keenan Crane, assistant professor of computer science at Carnegie Mellon University. “They can collapse down into really small volumes and, when you need them, are easily expanded.”

The researchers explored a number of designs in simulation, including shapes mimicking lizards and other animals.

But most telescoping devices are similar to a pirate’s telescope—a set of straight, nested cylinders. In this study, Crane, along with Stelian Coros, assistant professor of robotics, and Christopher Yu, a doctoral student in computer science, set out to find out what kinds of telescoping shapes are possible and to develop computational methods for designing and fabricating those shapes.

The researchers explored a number of designs in simulation, including shapes mimicking lizards and other animals.

They found that spherical, ring-shaped, and helical telescopes are possible. Once a designer selects the desired curve for a structure, their algorithms can devise a telescoping structure that can extend or contract without bumping into itself and that includes no wasted space between the nested pieces. They also devised connectors that would combine several such telescopes into a larger assembly.

collapsing lizard bot
(Credit: Carnegie Mellon)

The researchers devised algorithms that can take a target shape that includes curves or twists and design a telescoping structure to match. They also created a design tool that enables even a novice to create complex, collapsible assemblies

Though the nested sections can have a variety of cross-sections, they focused on those with circular cross sections, just like the pirate’s spyglass. Once extended, they noted, the circular cross sections make it possible for each of the curved segments to rotate, adding 3D twists to what otherwise would be 2D shapes.

Another was a robotic arm and claw that could emerge from a compact cylinder and reach up and over obstacles.

The simulations also enabled the researchers to analyze how the telescoping devices might move if they were actuated.

“We found that characters with telescoping parts are capable of surprisingly organic movements,” Coros says.

The National Science Foundation supported this research. The researchers will present their findings at the SIGGRAPH Conference on Computer Graphics and Interactive Techniques.

Source: Carnegie Mellon University

The post Telescoping design would make awesome robots appeared first on Futurity.

More from Futurity

Futurity3 min read
Young Heavy Drinkers Cut Alcohol Use During Pandemic
A new study finds heavy-drinking young adults decreased alcohol intake during the pandemic. The researchers found alcohol use and alcohol-related problems substantially decreased in heavy-drinking young adults during the pandemic, and these decreases
Futurity4 min read
Alzheimer’s Moves Faster In People With Down Syndrome
A new study shows that Alzheimer’s disease both starts earlier and moves faster in people with Down syndrome, The finding may have important implications for the treatment and care of this vulnerable group of patients. Nearly all adults with Down syn
Futurity5 min read
Why Saber Tooth Cats Kept Their Baby Teeth
Analysis suggests the baby teeth of saber tooth cats stayed in place for years to stabilize the growing permanent saber tooth, perhaps allowing adolescents to learn how to hunt without breaking them. The fearsome, saber-like teeth of Smilodon fatalis

Related Books & Audiobooks