Futurity

Nasal spray may limit brain damage from seizures

A nasal spray containing exosomes isolated from cultures of adult stem cells could be a non-invasive way to keep certain seizures from damaging the brain.

A nasal spray can limit damage to the brain from a seizure disorder called status epilepticus, a study in animals shows.

The disorder can present itself as a single seizure that lasts longer than 30 minutes or a series of seizures between which the person doesn’t regain consciousness. If it doesn’t stop quickly, even one episode can cause brain damage, loss of cognitive function, and memory loss.

“Saving the brain from injury and disease is certainly one of the holy grails of medicine.”

“Saving the brain from injury and disease is certainly one of the holy grails of medicine,” says Darwin J. Prockop, chair in genomic medicine and professor at the Texas A&M College of Medicine and co-senior author of the paper in the Proceedings of the National Academy of Sciences.

“Our paper suggests one way that this might be done, and not by a procedure that requires brain surgery or even injection into a vein: All that would be required is a nasal spray that a patient might receive in a doctor’s office.”

The compound in the nasal spray is anti-inflammatory exosomes, or extracellular vesicles, which Prockop and his team isolated from cultures of mesenchymal stem cells, a type of adult stem cell.

Researchers tested the efficiency of these exosomes in a status epilepticus model with damage from a period of acute seizures.

“What is remarkable is that the animal models were rescued from long-term effects of the seizure-induced brain injury by a nasal spray of exosomes,” Prockop says. It was able to ease inflammation of the neurons, prevent cognitive and memory dysfunction, and stop abnormal neurogenesis in the hippocampus, a vital part of the brain responsible for memory.

“We gave the intranasal vesicle spray twice over 24 hours, the first one at two hours after the onset of a status epilepticus episode, and such treatment was effective at reducing multiple adverse effects on the hippocampus,” says Ashok K. Shetty, professor of molecular and cellular medicine and co-senior author of the paper.

“In fact, the vesicles were able to move to the hippocampus in six hours, and their neuroprotection was enough to prevent loss of normal cognitive and memory function as well as abnormal neurogenesis, one of the substrates involved in formation of new memories.”

Drugs like benzodiazepines, which are tranquilizers, and hydantoins, a type of anticonvulsant, are used to stop status epilepticus episodes, but they are often unavailable—especially if the person hadn’t previously been diagnosed with epilepsy, which is the case 75 percent of the time. Further, they are ineffective perhaps as much as 30 percent of the time.

“There really hasn’t been anything noninvasive like this to stop the cascade of inflammation and abnormal neuronal wiring or epileptogenesis that occurs after a status epilepticus event,” Shetty says. “These vesicles do seem able to protect the brain after seizures, stop neuroinflammation, and prevent the development of chronic epilepsy that often results without this treatment.”

Although the findings are promising, the researchers urge caution before jumping to conclusions about a treatment for humans with seizures.

“Before this therapy can safely be tested in patients, we need to do great deal of further work,” Prockop says.

“But the inflammation in the brain caused by acute seizures is similar to the inflammation seen in the late stages of other brain diseases, including Alzheimer’s disease, parkinsonism, multiple sclerosis, and traumatic injuries,” Shetty adds. “Therefore, the promise of this new therapy is enormous.”

Source: Texas A&M University

The post Nasal spray may limit brain damage from seizures appeared first on Futurity.

More from Futurity

Futurity3 min readChemistry
Bacteria Could Replace Fossil Fuels For Making Valuable Chemicals
Researchers have engineered bacteria in the laboratory to efficiently use methanol. The metabolism of these bacteria can now be tapped into to produce valuable products currently made by the chemical industry from fossil fuels. To produce various che
Futurity1 min read
How You Can Reverse Insulin Resistance
What is insulin resistance and how can you reverse it? An expert has answers for you. Gerald I. Shulman, a professor of medicine (endocrinology) and cellular and molecular physiology, investigator emeritus of the Howard Hughes Medical Institute, and
Futurity3 min read
Teen Stress May Boost Risk Of Postpartum Depression Later
Social stress during adolescence in female mice later results in prolonged elevation of the hormone cortisol after they give birth, a new study shows. The researchers say this corresponds to the equivalent hormonal changes in postpartum women exposed

Related Books & Audiobooks