Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

An adaptive biomolecular condensation response is conserved across environmentally divergent species

An adaptive biomolecular condensation response is conserved across environmentally divergent species

FromPaperPlayer biorxiv cell biology


An adaptive biomolecular condensation response is conserved across environmentally divergent species

FromPaperPlayer biorxiv cell biology

ratings:
Length:
20 minutes
Released:
Jul 29, 2023
Format:
Podcast episode

Description

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2023.07.28.551061v1?rss=1

Authors: Keyport Kik, S., Christopher, D., Glauninger, H., Wong Hickernell, C., Bard, J. A. M., Ford, M., Sosnick, T. R., Drummond, D. A.

Abstract:
Cells must sense and respond to sudden maladaptive environmental changes--stresses--to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide an unprecedented view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein--a core marker of stress granules--condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC
Released:
Jul 29, 2023
Format:
Podcast episode

Titles in the series (100)

Audio versions of bioRxiv and medRxiv paper abstracts