Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells

A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells

FromPaperPlayer biorxiv cell biology


A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells

FromPaperPlayer biorxiv cell biology

ratings:
Length:
20 minutes
Released:
Apr 4, 2023
Format:
Podcast episode

Description

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2023.04.04.535541v1?rss=1

Authors: Wells, A., Mendes, C. C., Castellanos, F., Mountain, P., Wright, T., Wainwright, S. M., Stefana, M. I., Harris, A. L., Goberdhan, D. C. I., Wilson, C.

Abstract:
Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC
Released:
Apr 4, 2023
Format:
Podcast episode

Titles in the series (100)

Audio versions of bioRxiv and medRxiv paper abstracts