Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Function of ERphagy receptors is regulated via phosphorylation-dependent ubiquitination pathways

Function of ERphagy receptors is regulated via phosphorylation-dependent ubiquitination pathways

FromPaperPlayer biorxiv cell biology


Function of ERphagy receptors is regulated via phosphorylation-dependent ubiquitination pathways

FromPaperPlayer biorxiv cell biology

ratings:
Length:
20 minutes
Released:
Feb 28, 2023
Format:
Podcast episode

Description

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2023.02.27.530364v1?rss=1

Authors: Berkane, R., Ho-Xuan, H., Glogger, M., Sanz-Martinez, P., Cano-Franco, S., Juretschke, T., Gonzales Cardenas, A., Glaesner, T., Beli, P., Husnjak, K., Doetsch, V., Grumati, P., Heilemann, M., Stolz, A.

Abstract:
Selective autophagy of the ER (ERphagy) is an important regulator of ER remodeling and critical to maintain cellular homeostasis upon environmental changes. ERphagy receptors link the ER with autophagic membrane thus regulating ERphagy flux. We recently showed that members of the FAM134 family play overlapping and distinct roles during stress-induced ERphagy. Yet the mechanisms on how they are activated remain largely unknown. In this study we analyzed mTOR-mediated dynamic phosphorylation of FAM134 as a trigger of FAM134-driven ERphagy. An unbiased screen of kinase inhibitors revealed CK2 to be essential for FAM134B- and FAM134C-driven ERphagy upon mTOR inhibition. Identified dynamic phosphorylation sites on FAM134C in cells were fitting with predicted CK2 targeting sites, indicating a direct regulatory role of CK2 in FAM134-driven ERphagy. Using super-resolution microscopy, we showed that activity of CK2 is essential for the formation of high-density clusters of FAM134B and FAM134C. Consistently, FAM134B and FAM134C proteins carrying point mutations of selected Serin residues, within their reticulon homology domain, are unable to form high-density clusters. In addition, we provide evidence that the ubiquitination machinery is required for ERphagy and that FAM134B and FAM134C clustering is activated by phospho-dependent ubiquitination. Treatment with CK2 inhibitor SGC-CK2-1 prevents Torin1-induced ERphagy flux as well as ubiquitination of FAM134 proteins and consistently, treatment with E1 inhibitor suppresses Torin1-induced ERphagy flux. Therefore, we propose CK2 dependent phosphorylation of ERphagy receptors precedes ubiquitin-dependent ERphagy flux activation.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC
Released:
Feb 28, 2023
Format:
Podcast episode

Titles in the series (100)

Audio versions of bioRxiv and medRxiv paper abstracts