Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Circulation November 15, 2022 Issue

Circulation November 15, 2022 Issue

FromCirculation on the Run


Circulation November 15, 2022 Issue

FromCirculation on the Run

ratings:
Length:
24 minutes
Released:
Nov 14, 2022
Format:
Podcast episode

Description

This week, please join authors Qiang Zhang and Matthew Burrage as well as Senior Associate Editor Victoria Delgado as they discuss the article "Artificial Intelligence for Contrast-free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-Based Virtual Native Enhancement." Dr. Carolyn Lam: Welcome to Circulation On the Run, your weekly podcast summary and backstage pass to the journal and its editors. We're your cohosts. I'm Dr. Carolyn Lam, associate editor from the National Heart Center and Duke National University of Singapore. Dr. Peder Myhre: And I'm Dr. Peder Myhre from University of Akershus University Hospital in Norway. Dr. Carolyn Lam: Peder, today's feature discussion is on AI for contrast-free MRI. Isn't that so cool, using AI to perhaps understand what we could see only with contrast, but now in a contrast-free manner. Now I know that sound a bit confusing, but I hope very, very enticing, because everyone's going to have to wait for a little while before we get to that interesting feature discussion. And for now, let's talk about some of the papers we have in today's issue, shall we? Dr. Peder Myhre: Yes, Carolyn, I can't wait for the feature discussion, but we're going to start with some of the other papers in this week's issue, and we're going to start in the world of preclinical science with a paper looking at human cardiac reprogramming, because Carolyn, direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as one of the promising strategies to remuscularize the injured myocardium. Yet it is still insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails and underlying molecular mechanisms are not really well understood. Transcriptional factors often act in concert and form tightly controlled networks featuring with common targets among different transcriptional factors. Therefore, missing one component during heart development could lead to heart function defects and congenital heart disease. And in this study by corresponding author Yang Zhou from the University of Alabama at Birmingham, the authors perform transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes to assess additional factors that govern transcriptional activation of gene programs associated with sarcomere contractility. Dr. Carolyn Lam: Wow. Really nicely explained. Thanks, Peder. So what did they find? Dr. Peder Myhre: So Carolyn, through these computational analysis of transcriptomic data, the authors identified TBX20 as the most under expressed transcription factor in human induced cardiomyocytes compared to endogenous cardiomyocytes. They also demonstrated that TBX20 enhances human cardiac reprogramming and improves contractility and mitochondrial function in the reprogrammed cardiomyocytes. Dr. Carolyn Lam: Nice. Could you summarize the clinical implications, please? Dr. Peder Myhre: Yes. So the clinical implications are that enhancing the efficiency and quality of direct cardiac reprogramming for human fibroblast is a critical step in the clinical translation of this technology, and better understanding of this synergistic regulation of key cardiac transcription factors during reprogramming will provide new insights into the genetic basis in normal and diseased hearts. Well, Carolyn, please tell me about your next paper. Dr. Carolyn Lam: Thanks, and we're moving now to kidney disease. Now end stage renal disease is associated with a high risk of cardiovascular events, but what about mild to moderate kidney dysfunction? Is it causally related to coronary heart disease and stroke? Well, today's authors give us a clue, and it's from corresponding author Dr. Di Angelantonio from University of Cambridge and colleagues who took a very unique combined approach to answer this question. They first conducted observational analyses using individual level data from four huge population based data sources, namely
Released:
Nov 14, 2022
Format:
Podcast episode

Titles in the series (100)

Each 15-minute podcast begins with an overview of the issue’s contents and main take-home messages for busy clinicians on the run. This is followed by a deep dive into a featured article of particular clinical significance: views will be heard from both author and editor teams for a “behind the scenes” look at the publication. Expect a fun, highly conversational and clinically-focused session each week!