Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Pediatric Post Cardiac Arrest Syndrome (PCAS) Part 2

Pediatric Post Cardiac Arrest Syndrome (PCAS) Part 2

FromPICU Doc On Call


Pediatric Post Cardiac Arrest Syndrome (PCAS) Part 2

FromPICU Doc On Call

ratings:
Length:
37 minutes
Released:
Mar 20, 2022
Format:
Podcast episode

Description

Welcome to PICU Doc On Call, a podcast dedicated to current and aspiring intensivists. My name is Pradip Kamat. My name is Rahul Damania and we come to you from Children’s Healthcare of Atlanta-Emory University School of Medicine.
Today's episode Is part two of our pediatric post-cardiac arrest care syndrome
If you have not yet listened to part one, I would highly encourage you to visit that episode prior to delving into this one.
Part 1 addressed the epidemiology, causes, and pathophysiology of POST CARDIAC ARREST SYNDROME.
Part 2 Today will discuss management and complications related to post-cardiac arrest syndrome in the ICU.
To revisit our index case we had a:
11 yo previously healthy M who was admitted to the PICU after cardiac arrest. After stabilization: The patient was taken to head CT which showed diffuse cerebral edema and diffusely diminished grey-white differentiation most pronounced in the basal ganglia. He is now 18-24 hours post-cardiac arrest and the team is dealing with hemodynamic changes, arrhythmias, and difficulty with ventilation. The patient’s neurological exam still remains poor with fixed 5 mm pupils and upper motor neuron signs in the lower extremities.

Let’s get right into it:
What are some of the principles in management of patients with post cardiac arrest syndrome (PCAS)? Where do we keep the patients blood pressure?
Hypotension after ROSC is commonly encountered in children with PCAS. Early hypotension occurred in 27% of children after cardiac arrest is associated with lower survival to hospital discharge and unfavorable neurological outcome. When post-cardiac arrest hypotension is present, it is not clear whether increasing the blood pressure through administration of fluids and inotropes/vasopressors can mitigate harm, despite this 41% of patients under 18 receive vasopressor therapy within the first 6 hours after ROSC. Currently, there is no high-quality evidence to support any single specific strategy for post-cardiac arrest hemodynamic optimization in children. Treatment of post-cardiac arrest hypotension and myocardial dysfunction may be assisted by monitoring and evaluating arterial lactate and central venous oxygen saturation. Parenteral fluids, inotropes, and vasoactive drugs are to be used as needed to maintain a systolic blood pressure greater than the fifth percentile for age. Appropriate vasoactive drug therapies should be tailored to each patient and adjusted as needed.
What about cardiac arrhythmia's such as Vtach seen in our patient?
The rhythm disturbances observed during the post-cardiac arrest period include premature atrial and ventricular contractions, supraventricular tachycardias, and ventricular tachycardias. Heart block is unusual but can be observed as a manifestation of myocarditis. There is inadequate evidence in adults and no published studies in children to support the routine administration of prophylactic antiarrhythmics after ROSC, but rhythm disturbances during this period may warrant therapy. Treatment depends on the cause and hemodynamic consequences of the arrhythmias. Premature depolarizations, both atrial and ventricular, usually do not require therapy other than maintenance of adequate perfusion and normal fluid and electrolyte balance. Ventricular arrhythmias may signify more serious myocardial dysfunction. QT prolonging agents must be avoided. Many of the vasoactive agents used to support myocardial function can increase myocardial irritability and risk of arrhythmias. Premature atrial or ventricular depolarizations are frequently observed and can be controlled by optimizing the dose of the vasoactive drugs. Bradycardia is frequently seen in TTM and typically requires no therapy. During PCAC, mechanical circulatory support (ECMO) may be considered if significant cardiorespiratory instability persists despite appropriate volume expansion and administration of inotropes, vasopressors, and, if indicated,http://antiarrhythmics.in (...
Released:
Mar 20, 2022
Format:
Podcast episode

Titles in the series (85)

PICU Doc On Call is the podcast for current and aspiring Intensivists. This podcast will provide protocols that any Critical Care Physician would use to treat common emergencies and the sudden onset of acute symptoms. Brought to you by Emory University School of Medicine, in conjunction with Dr. Rahul Damania and under the supervision of Dr. Pradip Kamat.