Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Can Math Explain How Animals Get Their Patterns?

Can Math Explain How Animals Get Their Patterns?

FromMinuteEarth


Can Math Explain How Animals Get Their Patterns?

FromMinuteEarth

ratings:
Length:
4 minutes
Released:
Aug 11, 2016
Format:
Podcast episode

Description

How Alan Turing's Reaction-Diffusion Model Simulates Patterns in Nature Thanks to http://www.audible.com/minuteearth for sponsoring this video. Asparagus Pee Survey Results: https://goo.gl/8x7abL ___________________________________________ If you liked this video, we think you might also like this: Reaction Diffusion Simulation (Gray-Scott model) https://pmneila.github.io/jsexp/grayscott/ ___________________________________________ Credits (and Twitter handles): Script Writer: Rachel Becker (@RA_Becks) Script Editor: Emily Elert (@eelert) Video Illustrator: Ever Salazar (@eversalazar) Video Director: Emily Elert (@eelert) Video Narrator: Emily Elert (@eelert) With Contributions From: Henry Reich, Alex Reich, Kate Yoshida, Omkar Bhagat, Peter Reich, David Goldenberg Music by: Nathaniel Schroeder: http://www.soundcloud.com/drschroeder Also, special thanks to the following scientists: Greg Barsh: Investigator, HudsonAlpha Institute for Biotechnology (http://goo.gl/RMD8o9) Jeremy Green: Professor of developmental biology, King’s College London (https://goo.gl/Qcn8Ay) Thomas Hiscock: Graduate student in systems biology, Harvard University (http://goo.gl/RbAWIy) Shigeru Kondo: Professor, Osaka University (http://goo.gl/uQ2wYO) James Sharpe: Coordinator of EMBL-CRG Systems Biology Unit and ICREA research professor (http://goo.gl/QCGul8) Ian Stewart: Emeritus professor of mathematics, University of Warwick and author of The Mathematics of Life (http://goo.gl/rGR1R0) Thomas Woolley: Postdoctoral scientist, St John's College Oxford (http://goo.gl/B4FZNn) Image Credits: - Mouse palate images provided courtesy of Jeremy Green, King’s College London. - Digit patterns image provided courtesy of Luciano Marcon and Jelena Raspopovic. - Angelfish and zebrafish images provided courtesy of Shigeru Kondo. _________________________________________ Subscribe to MinuteEarth on YouTube: http://goo.gl/EpIDGd Support us on Patreon: https://goo.gl/ZVgLQZ Facebook: http://goo.gl/FpAvo6 Twitter: http://goo.gl/Y1aWVC itunes: https://goo.gl/sfwS6n ___________________________________________ Here are some handy keywords to get your googling started: Reaction-diffusion system: A hypothetical system in which multiple chemical substances diffuse through a defined space at different rates and react with one another, thereby generating a pattern. Turing pattern: A periodic pattern that forms in a space where the initial distribution of ‘activator’ and ‘inhibitor’ is the same. Morphogenesis: The processes during development that give rise to the form or shape of the organism or a structure Alan Turing: Alan Turing was a British mathematician and the father of modern computer science. During World War II, he broke Germany’s Enigma code used to encrypt communications. ____________________ References: Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., … Green, J. B. A. (2012). Periodic stripe formation by a Turing-mechanism operating at growth zones in the mammalian palate. Nature Genetics, 44(3), 348–351. http://doi.org/10.1038/ng.1090 Economou, A. D., & Green, J. B. (2014). Modelling from the experimental developmental biologists viewpoint. Seminars in Cell & Developmental Biology, 35, 58-65. doi:10.1016/j.semcdb.2014.07.006 Green, J. B., & Sharpe, J. (2015). Positional information and reaction-diffusion: Two big ideas in developmental biology combine.Development, 142(7), 1203-1211. doi:10.1242/dev.114991 Kimura, Y. T. (2016, May 24). The mathematics of patterns. Retrieved from http://www.theshapeofmath.com/princeton/dynsys Kimura, Y. T. (2014). The Mathematics of Patterns: The modeling and analysis of reaction-diffusion equations (Thesis, Princeton University). Http://www.pacm.princeton.edu/documents/Kimura.pdf. Kondo, S., & Asai, R. (1995). A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature, 376(6543), 765-768. doi:10.1038/376765a0 Kondo, S., & Miura, T. (2010). Reaction-Diffusion Model as a Fra
Released:
Aug 11, 2016
Format:
Podcast episode

Titles in the series (100)

Science and stories about our awesome planet!