Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $11.99/month after trial. Cancel anytime.

Metal-Free Synthetic Organic Dyes
Metal-Free Synthetic Organic Dyes
Metal-Free Synthetic Organic Dyes
Ebook567 pages3 hours

Metal-Free Synthetic Organic Dyes

Rating: 0 out of 5 stars

()

Read preview

About this ebook

Metal- Free Synthetic Organic Dyes is a comprehensive guide to the synthetic, organic dyes that are classified by their chemical structure. As synthetic dyes are playing an increasingly important role in modern life, with applications in both industry and scientific research, this book provides insights on the many research attempts that have been made to explore new photosensitizers in the development of dye sensitized solar cells (DSCs). These novel photosensitizers have incorporated, within their structure, different organic groups, such as coumarins, cyanines, hemicyanines, indolines, triphenylamines, bis(dimethylfluorenyl) aminophenyls, phenothiazines, tetrahydroquinolines, carbazoles, polyenes, fluorenes, and many others.

This comprehensive resource contains color figures and schemes for each dye discussed, and is an invaluable resource for organic, inorganic and analytical chemists working in academia and industry.

  • Features a discussion of the synthesis of the new, high-value synthetic dyes and pigments and their applications and performance
  • Includes coverage of new photosensitizers and their role in the development of dye sensitized solar cells (DSCs)
  • Covers synthesis of the functional dyes that are ideal for applications in the dye and pigment industry, textiles, color science, solar energy materials and solar cells, biomedical sensors, advanced materials, structure and synthesis of materials, and more
LanguageEnglish
Release dateJul 25, 2018
ISBN9780128156483
Metal-Free Synthetic Organic Dyes
Author

Ghodsi Mohammadi Ziarani

Dr. Ziarani received her B.Sc. degree in Chemistry from Teacher Training University, Tehran, Iran, in 1987, her M.Sc. degree in Organic Chemistry from the Teacher Training University, Tehran, Iran, under the supervision of Professor Jafar Asgarin and Professor Mohammad Ali Bigdeli in 1991 and her Ph.D. degree in asymmetric synthesis (Biotransformation) from Laval University, Quebec, Canada under the supervision of Professor Chenevert, in 2000. She is Full Professor of Organic Chemistry in the chemistry department of Alzahra University. Her research interests include organic synthesis, heterocyclic synthesis, asymmetric synthesis, natural products synthesis, synthetic methodology and applications of nano-heterogeneous catalysts in multicomponent reactions.

Related to Metal-Free Synthetic Organic Dyes

Related ebooks

Chemistry For You

View More

Related articles

Reviews for Metal-Free Synthetic Organic Dyes

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Metal-Free Synthetic Organic Dyes - Ghodsi Mohammadi Ziarani

    Metal-Free Synthetic Organic Dyes

    Ghodsi Mohammadi Ziarani

    Razieh Moradi

    Negar Lashgari

    Alzahra University, Tehran, Iran

    Hendrik G. Kruger

    University of KwaZulu-Natal, Durban, South Africa

    Table of Contents

    Cover image

    Title page

    Copyright

    Biography

    Acknowledgments

    Chapter 1. Introduction and Importance of Synthetic Organic Dyes

    Chapter 2. Anthraquinone Dyes

    2.1. Synthesis of Anthraquinone Dyes

    2.2. Application of Anthraquinone Dyes

    Chapter 3. Amine Dyes

    3.1. Synthesis of Amine Dyes

    3.2. Application of Amine Dyes

    Chapter 4. Azo Dyes

    4.1. Synthesis of Azo Dyes

    4.2. Application of Azo Dyes

    Chapter 5. BODIPY Dyes

    5.1. Synthesis of Boron Dipyrromethene Dyes

    5.2. Application of Boron Dipyrromethene Dyes

    Chapter 6. Carbazole Dyes

    6.1. Synthesis of Carbazole Dyes

    6.2. Application of Carbazole Dyes

    Chapter 7. Coumarin Dyes

    7.1. Synthesis of Coumarin Dyes

    7.2. Application of Coumarin Dyes

    Chapter 8. Cyanine Dyes

    8.1. Synthesis of Cyanine Dyes

    8.2. Application of Cyanine Dyes

    Chapter 9. Fluorene Dyes

    9.1. Synthesis of Fluorene Dyes

    9.2. Application of Fluorene Dyes

    Chapter 10. Fluorescein Dyes

    10.1. Synthesis of Fluorescein Dyes

    10.2. Application of Fluorescein Dyes

    Chapter 11. Imide Dyes

    11.1. Synthesis of Imide Dyes

    11.2. Application of Imide Dyes

    Chapter 12. Oxazine Dyes

    12.1. Synthesis and Application of Oxazine Dyes

    Chapter 13. Phenothiazine Dyes

    13.1. Synthesis of Phenothiazine Dyes

    13.2. Application of Phenothiazine Dyes

    Chapter 14. Rhodamine Dyes

    14.1. Synthesis of Rhodamine Dyes

    14.2. Application of Rhodamine Dyes

    Chapter 15. Squaraine Dyes

    15.1. Synthesis of Squaraine Dyes

    Chapter 16. Thiophene Dyes

    16.1. Synthesis of Thiophene Dyes

    16.2. Application of Thiophene Dyes

    Chapter 17. Triazine Dyes

    17.1. Synthesis of Triazine Dyes

    17.2. Application of Triazine Dyes

    Chapter 18. The Dyes Based on Several Chromophores

    18.1. Synthesis of Dyes Based on Several Chromophores

    18.2. Application of Dyes Based on Several Chromophores

    Chapter 19. Miscellaneous Dyes

    19.1. Synthesis of Miscellaneous Dyes

    19.2. Application of Miscellaneous Dyes

    Chapter 20. Conclusions

    Abbreviations

    Index

    Copyright

    Elsevier

    Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands

    The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

    50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

    Copyright © 2018 Elsevier Inc. All rights reserved.

    No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

    This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

    Notices

    Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

    Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

    To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

    Library of Congress Cataloging-in-Publication Data

    A catalog record for this book is available from the Library of Congress

    British Library Cataloguing-in-Publication Data

    A catalogue record for this book is available from the British Library

    ISBN: 978-0-12-815647-6

    For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

    Publisher: Susan Dennis

    Acquisition Editor: Emily M. McCloskey

    Editorial Project Manager: Katerina Zaliva

    Production Project Manager: Bharatwaj Varatharajan

    Cover Designer: Greg Harris

    Typeset by TNQ Technologies

    Biography

    Ghodsi Mohammadi Ziarani was born in Iran, in 1964. She received her BSc degree in Chemistry from Teacher Training University, Tehran, Iran, in 1987, her MSc degree in Organic Chemistry from the Teacher Training University, Tehran, Iran, under the supervision of Professor Jafar Asgarin and Professor Mohammad Ali Bigdeli in 1991, and her PhD degree in asymmetric synthesis (Biotransformation) from Laval University, Quebec, Canada under the supervision of Professor Chenevert, in 2000. She is Full Professor of Organic Chemistry in the chemistry department of Alzahra University. Her research interests include organic synthesis, heterocyclic synthesis, asymmetric synthesis, natural products synthesis, synthetic methodology, and applications of nanoheterogeneous catalysts in multicomponent reactions.

    Razieh Moradi was born in 1990 in Delfan, Lorestan, Iran. She obtained her BSc degree in Chemistry from the University of Lorestan (2012) and her MSc degree in Organic Chemistry at Alzahra University under the supervision of Dr. Ghodsi Mohammadi Ziarani. She is currently a PhD student in Organic Chemistry at Alzahra University under the supervision of Dr. Ghodsi Mohammadi Ziarani. Her research field is on the synthesis of heterocyclic compounds, synthesis of organic dyes, and application of nanoheterogeneous catalysts in organic synthesis and multicomponent reactions.

    Negar Lashgari was born in 1985 in Tehran, Iran. She received her BSc degree in Applied Chemistry from Kharazmi University, Karaj, Iran (2008) and her MSc degree in Organic Chemistry at Alzahra University, Tehran, Iran (2011) under the supervision of Dr. Ghodsi Mohammadi Ziarani. She obtained her PhD degree in Nano Chemistry from University of Tehran under the supervision of Dr. Alireza Badiei and Dr. Ghodsi Mohammadi Ziarani in 2017. Her research field is synthesis and functionalization of mesoporous silica materials and their application as nanoheterogeneous catalysts in multicomponent reactions and also as chemosensors for detection of various anions and cations.

    Gert (H.G.) Kruger graduated from Potchefstroom University, South Africa, in 1996 under the supervision of Frans (F.J.C.) Martins and Attie (A.M.) Viljoen. His PhD lineage is traced back to Rudolf Criegee (Wurzburg) via Johan Dekker (Karlsruhe). The Dekkers introduced cage chemistry to South Africa, and Kruger actively pursues the synthesis, computational chemistry, and biological application of cage compounds at the Catalysis and Peptide Research Unit, University of KwaZulu Natal as a research professor.

    Acknowledgments

    We are grateful for financial support from the Research Council of Alzahra University.

    Chapter 1

    Introduction and Importance of Synthetic Organic Dyes

    Abstract

    Synthetic dyes, manufactured from organic molecules, are more and more playing important roles in our modern life with applications in both industry (e.g., paint industry) and scientific laboratories (e.g., fluorescent tracers and photoredox catalysts). A plethora of strategies were invented by chemists to facilitate the synthesis of complex synthetic organic dyes. This book presents comprehensive information on the respective synthetic organic dyes. In this regard, a variety of dyes, including anthraquinones, aryl amines, azo dyes, BODIPY, carbazoles, cyanines, fluoresceins, oxazines, phenothiazines, rhodamines, squaraines, thiophene dyes, etc., were collected and discussed.

    Keywords

    Dye-sensitized solar cells; Industry; Organic dyes; Photosensitizer; Synthetic dyes

    Chapter Outline

    References

    Synthetic dyes are manufactured from organic molecules. Before the discovery of synthetic dyes in 1856, the majority of natural dyes were prepared from plant sources: roots, berries, bark, leaves, wood, fungi, and lichens (Fig. 1.1) [1–4]. Batches of natural dyes were never exactly alike in hue and intensity, whereas synthetic dyestuffs can be manufactured consistently (Fig. 1.2) [5–10]. These dyes are made from synthetic resources such as chemicals, petroleum by-products, and earth minerals. The first human-made organic aniline dye, mauveine, was discovered by William Henry Perkin in 1856 [11], the result of a failed attempt in total synthesis of quinine. Since then, thousands of synthetic dyes have been prepared [12,13].

    Synthetic dyes have been widely used in supramolecular chemistry not only to probe fundamental chemical interactions but also as components of functional materials [14–20]. Many of them have been widely utilized as fluorescent tracers in medicinal [13,21–23] and biological [24–30] applications and tumor-infected tissues tracers [31–33]. Organic dyes were also applied as photoredox catalysts in organic synthesis [34–37], laser [38–47], nanofiber [48], and in the paint industry [49–52].

    During the past decade, numerous research attempts have been made on exploring new photosensitizers in the development of dye-sensitized solar cells (DSSCs). In the last decade, DSSCs have received considerable attention as one of the most promising new renewable photovoltaic cells alternative to conventional solid-state cells because of their advantageous properties, including low cost, environmental compatibility, and simplicity of the fabrication process. In recent years, metal-free organic dyes have been central in the development of DSSCs and are known to improve photovoltaic performance of DSSCs. In this regard, a variety of metal-free organic sensitizers have been developed [53–90].

    Metal-free organic dyes offer the advantages of superior molar extinction coefficients, lower cost, and large diversity of molecular structures. Several versatile metal-free organic dyes have been synthesized over the past decade. These novel photosensitizers have incorporated different organic groups such as coumarins [91], cyanines [92,93], hemicyanines [94], indolines [95], triphenylamines [96], bis(dimethylfluorenyl) aminophenyls [97], phenothiazines [98,99], carbazoles [100], polyenes [101], fluorenes [102], and many others.

    Figure 1.1  Representative natural dyes.

    Figure 1.2  Representative synthetic dyes.

    Because of the widespread use of organic dyes and also tremendous interest of researchers in the area of synthetic organic dyes, and since there is no comprehensive book on the synthesis of different organic dyes, this book aims to review the synthetic organic dyes by classifying them based on their chemical structure and describing the synthesis and application of these structures. To make it easier for the reader to find the respective synthetic organic dyes, we chose to arrange this book based on the names of the organic dyes in alphabetical order. As far as possible, we have also indicated the color of the respective dyes in the various figures and schemes. Because of the vast area of organic synthetic dyes, it is virtually impossible to present all examples here; however, we attempted to summarize the most important structures and functional groups.

    References

    [1] Brightman R. Perkin and the dyestuffs industry in Britain. Nature. 1956;177:805–856.

    [2] Vankar P.S, Shanker R, Mahanta D, Tiwari S. Ecofriendly sonicator dyeing of cotton with Rubia cordifolia Linn. using biomordant. Dyes Pigment. 2008;76(1):207–212.

    [3] McGovern P.E, Michel R.H. Royal purple dye: tracing the chemical origins of the industry. Anal Chem. 1985;57(14):1514–1522.

    [4] Hunger K, Herbst W. Pigments, organic. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2012.

    [5] Macleod L.C, Allen C.F.H. Benzanthrone. Org Synth. 1934;2:62–69.

    [6] Clarke H.T, Kirner W.R. Methyl red. Org Synth. 1941;1:374–375. .

    [7] Caro H, [Inventor]. U.S. Patent, assignee. Improvement in the production of dye-stuffs from methyl-aniline patent U. S. Patent 204796 A; June 11, 1878.

    [8] Fittig R. Ueber einen neuen Kohlenwasserstoff aus dem diphenylenketon. Ber Dtsch Chem Ges. 1873;6(1):187.

    [9] Schäfer F.P. Dye lasers. 3rd ed. Berlin: Springer-Verlag; 1990.

    [10] Duarte F.J, Hillman L.W. Dye laser principles. New York: Academic; 1990.

    [11] Perkin WH, [Inventor]. Dyeing fabrics patent British Patent 1984; 1856.

    [12] Hunger K. Industrial dyes: chemistry, properties, applications. Weinheim: Wiley-VCH; 2003.

    [13] Zollinger H. Color chemistry. Synthesis, properties and applications of organic dyes and pigments. Weinheim: Wiley-VCH; 2003.

    [14] Arunkumar E, Forbes C.C, Smith B.D. Improving the properties of organic dyes by molecular encapsulation. Eur J Org Chem. 2005;2005(19):4051–4059.

    [15] Würthner F, Kaiser T.E, Saha-Möller C.R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Ed. 2011;50(15):3376–3410.

    [16] Benvin A.L, Creeger Y, Fisher G.W, Ballou B, Waggoner A.S, Armitage B.A. Fluorescent DNA nanotags: supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. J Am Chem Soc. 2007;129(7):2025–2034.

    [17] Hannah K.C, Armitage B.A. DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. Acc Chem Res. 2004;37(11):845–853.

    [18] Von Berlepsch H, Böttcher C, Ouart A, Burger C, Dähne S, Kirstein S. Supramolecular structures of J-aggregates of carbocyanine dyes in solution. J Phys Chem B. 2000;104(22):5255–5262.

    [19] Dsouza R.N, Pischel U, Nau W.M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev. 2011;111(12):7941–7980.

    [20] Zabala Ruiz A, Li H, Calzaferri G. Organizing supramolecular functional dye–zeolite crystals. Angew Chem. 2006;118(32):5408–5413.

    [21] Stasiak N, Kukula-Koch W, Glowniak K. Modern industrial and pharmacological applications of indigo dye and its derivatives: an review. Acta Pol Pharm. 2014;71(2):215–221.

    [22] Waring D.R, Hallas G. The chemistry and application of dyes. Berlin: Springer Science & Business Media; 2013.

    [23] Bakry R, Vallant R.M, Najam-ul-Haq M, Rainer M, Szabo Z, Huck C.W, et al. Medicinal applications of fullerenes. Int J Nanomed. 2007;2(4):639.

    [24] Lowe C.R, Burton S.J, Pearson J.C, Clonis Y.D, Stead V. Design and application of bio-mimetic dyes in biotechnology. Acta Cryst D. 1986;376:121–130.

    [25] Reinhardt B.A, Brott L.L, Clarson S.J, Dillard A.G, Bhatt J.C, Kannan R, et al. Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem Mater. 1998;10(7):1863–1874.

    [26] Horobin R. The impurities of biological dyes: their detection, removal, occurrence and histological significance—a review. Histochem J. 1969;1(3):231–265.

    [27] Ross S. Solubilization of dyes in mineral oil and its application to a model biological cell membrane. J Colloid Sci. 1951;6(6):497–507.

    [28] Wang S, Chang Y.-T. Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors. J Am Chem Soc. 2006;128(32):10380–10381.

    [29] Rai H.S, Bhattacharyya M.S, Singh J, Bansal T, Vats P, Banerjee U. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol. 2005;35(3):219–238. .

    [30] Mirjalili M, Abbasipour M. Comparison between antibacterial activity of some natural dyes and silver nanoparticles. J Nanostruct Chem. 2013;3(1):1–3.

    [31] El-Sayed I.H, Huang X, El-Sayed M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–834.

    [32] Geschickter C.F. The application of dyes in the cancer problem. Stain Tecnol. 1930;5(2):49–64.

    [33] Morris M.C. Fluorescent biosensors for cancer cell imaging and diagnostics. Biosensors Cancer. 2012:101–124.

    [34] Nicewicz D.A, Nguyen T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2013;4(1):355–360.

    [35] Fukuzumi S, Ohkubo K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org Biomol Chem. 2014;12(32):6059–6071.

    [36] Ravelli D, Fagnoni M. Dyes as visible light photoredox organocatalysts. ChemCatChem. 2012;4(2):169–171.

    [37] Prier C.K, Rankic D.A, MacMillan D.W. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev. 2013;113(7):5322–5363.

    [38] Schäfer F.P, Schmidt W, Volze J. Organic dye solution laser. App Phys Lett. 1966;9(8):306–309.

    [39] Peterson O, Tuccio S, Snavely B. CW operation of an organic dye solution laser. App Phys Lett. 1970;17(6):245–247.

    [40] Peterson O, Webb J, McColgin W, Eberly J. Organic dye laser threshold. J App Phys. 1971;42(5):1917–1928.

    [41] Glenn W, Brienza M, DeMaria A. Mode locking of an organic dye laser. App Phys Lett. 1968;12(2):54–56.

    [42] Soffer B, McFarland B. Continuously tunable, narrow-band organic dye lasers. App Phys Lett. 1967;10(10):266.

    [43] Knobbe E.T, Dunn B, Fuqua P.D, Nishida F. Laser behavior and photostability characteristics of organic dye doped silicate gel materials. App Opt. 1990;29(18):2729–2733.

    [44] Lahoz F, Martín I, Gil-Rostra J, Oliva-Ramirez M, Yubero F, Gonzalez-Elipe A. Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor. Opt Express. 2016;24(13):14383–14392.

    [45] Vannahme C, Dufva M, Kristensen A. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor. Light Sci App. 2015;4(4):269.

    [46] Song W, Psaltis D. Pneumatically tunable optofluidic dye laser. App Phys Lett. 2010;96(8):81–101.

    [47] Mohanty J, Jagtap K, Ray A.K, Nau W.M, Pal H. Molecular encapsulation of fluorescent dyes affords efficient narrow-band dye laser operation in water. ChemPhysChem. 2010;11(15):3333–3338.

    [48] Lee E.-M, Gwon S.-Y, Son Y.-A, Kim S.-H. Modulation of a fluorescence switch of nanofiber mats containing photochromic spironaphthoxazine and D-π-A charge transfer dye. J Lumin. 2012;132(6):1427–1431.

    [49] Nigel Corns S, Partington S.M, Towns A.D. Industrial organic photochromic dyes. Color Technol. 2009;125(5):249–261.

    [50] Hunger K. Industrial dyes: chemistry, properties, applications. United States: John Wiley & Sons; 2007.

    [51] Kent J.A. Riegel’s handbook of industrial chemistry. Berlin: Springer Science & Business Media; 2012.

    [52] Casadio F, Leona M, Lombardi J.R, Van Duyne R. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res. 2010;43(6):782–791. .

    [53] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev. 2010;110(11):6595–6663.

    [54] Li L.-L, Diau E.W.-G. Porphyrin-sensitized solar cells. Chem Soc Rev. 2013;42(1):291–304.

    [55] Akhtaruzzaman M, Islam A, El-Shafei A, Asao N, Jin T, Han L, et al. Structure–property relationship of different electron donors: novel organic sensitizers based on fused dithienothiophene π-conjugated linker for high efficiency dye-sensitized solar cells. Tetrahedron. 2013;69(16):3444–3450.

    [56] Matsui M, Shiota T, Kubota Y, Funabiki K, Jin J, Yoshida T, et al. N-(2-Alkoxyphenyl)-substituted double rhodanine indoline dyes for zinc oxide dye-sensitized solar cell. Tetrahedron. 2012;68(22):4286–4291.

    [57] Lin L.-Y, Tsai C.-H, Lin F, Huang T.-W, Chou S.-H, Wu C.-C, et al. 2, 1, 3-Benzothiadiazole-containing donor–acceptor–acceptor dyes for dye-sensitized solar cells. Tetrahedron. 2012;68(36):7509–7516.

    [58] Lin L.-Y, Tsai C.-H, Wong K.-T, Huang T.-W, Hsieh L, Liu S.-H, et al. Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells. J Org Chem. 2010;75(14):4778–4785.

    [59] Kim S, Choi H, Baik C, Song K, Kang S.O, Ko J. Synthesis of conjugated organic dyes containing alkyl substituted thiophene for solar cell. Tetrahedron. 2007;63(46):11436–11443.

    [60] Gupta A, Armel V, Xiang W, Fanchini G, Watkins S.E, MacFarlane D.R, et al. The effect of direct amine substituted push–pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron. 2013;69(17):3584–3592.

    [61] Kim M.-J, Yu Y.-J, Kim J.-H, Jung Y.-S, Kay K.-Y, Ko S.-B, et al. Tuning of spacer groups in organic dyes for efficient inhibition of charge recombination in dye-sensitized solar cells. Dyes Pigment. 2012;95(1):134–141.

    [62] Cheng X, Liang M, Sun S, Shi Y, Ma Z, Sun Z, et al. Synthesis and photovoltaic properties of organic sensitizers containing electron-deficient and electron-rich fused thiophene for dye-sensitized solar cells. Tetrahedron. 2012;68(27):5375–5385.

    [63] Li G, Liang M, Wang H, Sun Z, Wang L, Wang Z, et al. Significant enhancement of open-circuit voltage in indoline-based dye-sensitized solar cells via retarding charge recombination. Chem Mater. 2013;25(9):1713–1722.

    [64] Lu M, Liang M, Han H.-Y, Sun Z, Xue S. Organic dyes incorporating bis-hexapropyltruxeneamino moiety for efficient dye-sensitized solar cells. J Phys Chem C. 2010;115(1):274–281.

    [65] Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B.F, Ashari-Astani N, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem. 2014;6(3):242–247.

    [66] Zhang X, Grätzel M, Hua J. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells. Front Optoelectron. 2016;9(1):3–37.

    [67] Decoppet J.D, Khan S.B, Al-Ghamdi M.S, Alhogbi B.G, Asiri A.M, Zakeeruddin S.M, et al. Influence of Ionic liquid electrolytes on the photovoltaic performance of dye-sensitized solar cells. Energy Technol. 2017;5(2):321–326.

    [68] Galliano S, Bella F, Gerbaldi C, Falco M, Viscardi G, Grätzel M, et al. Photoanode/electrolyte interface stability in aqueous dye-sensitized solar cells. Energy Technol. 2017;5(2):300–311.

    [69] Hao Y, Saygili Y, Cong J, Eriksson A, Yang W, Zhang J, et al. Novel blue organic dye for dye-sensitized solar cells achieving high efficiency in cobalt-based electrolytes and by co-sensitization. ACS Appl Mater Interfaces. 2016;8(48):32797–32804.

    [70] Hu Y, Abate A, Cao Y, Ivaturi A, Zakeeruddin S.M, Grätzel M, et al. High absorption coefficient cyclopentadithiophene donor-free dyes for liquid and solid-state dye-sensitized solar cells. J Phys Chem C. 2016;120(28):15027–15034. .

    [71] Zhang X, Xu Y, Giordano F, Schreier M, Pellet N, Hu Y, et al. Molecular engineering of potent sensitizers for very efficient light harvesting in thin-film solid-state dye-sensitized solar cells. J Am Chem Soc. 2016;138(34):10742–10745.

    [72] Hashmi S.G, Özkan M, Halme J, Zakeeruddin S.M, Paltakari J, Grätzel M, et al. Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ Sci. 2016;9(7):2453–2462.

    [73] Zhang J, Vlachopoulos N, Hao Y, Holcombe T.W, Boschloo G, Johansson E.M, et al. Efficient blue-colored solid-state dye-sensitized solar cells: enhanced charge collection by using an in situ photoelectrochemically generated conducting polymer hole conductor. ChemPhysChem. 2016;17(10):1441–1445.

    [74] Seo H, Son M.-K, Itagaki N, Koga K, Shiratani M. Polymer counter electrode of poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonate) containing TiO2 nano-particles for dye-sensitized solar cells. J Power Sources. 2016;307:25–30.

    [75] Brogdon P, Giordano F, Puneky G.A, Dass A, Zakeeruddin S.M, Nazeeruddin M.K, et al. A computational and experimental study of thieno[3,4-b]thiophene as a proaromatic π-bridge in dye-sensitized solar cells. Chem Eur J. 2016;22(2):694–703.

    [76] Antony M.P, Moehl T, Wielopolski M, Moser J.E, Nair S, Yu Y.J, et al. Long-range π-conjugation in phenothiazine-containing donor–acceptor dyes for application in dye-sensitized solar cells. Chem Sus Chem. 2015;8(22):3859–3868.

    [77] Wu Y, Zhu W.-H, Zakeeruddin S.M. Grätzel M. Insight into D-A-π-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl Mater Interfaces. 2015;7(18):9307–9318.

    [78] Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photon. 2017(11):372–378.

    [79] Vlachopoulos N, Zhang J, Hagfeldt A. Dye-sensitized solar cells: new approaches with organic solid-state hole conductors. Chim Int J Chem. 2015;69(1):41–51.

    [80] Tian H, Soto A, Xu B, Sun L, Hagfeldt A, Fabregat-Santiago F, et al. Effect of the chromophores structures on the performance of solid-state dye sensitized solar cells. Nano. 2014;9(05):1440005.

    [81] Li H, Koh T.M, Hao Y, Zhou F, Abe Y, Su H, et al. Comparative studies on rigid π linker-based organic dyes: structure–property relationships and photovoltaic performance. Chem Sus Chem. 2014;7(12):3396–3406.

    [82] Johansson E.M, Lindblad R, Siegbahn H, Hagfeldt A, Rensmo H. Atomic and electronic structures of interfaces in dye-sensitized, nanostructured solar cells. ChemPhysChem. 2014;15(6):1006–1017.

    [83] Zhang J, Häggman L, Jouini M, Jarboui A, Boschloo G, Vlachopoulos N, et al. Solid-state dye-sensitized solar cells based on poly (3, 4-ethylenedioxypyrrole) and metal-free organic dyes. ChemPhysChem. 2014;15(6):1043–1047.

    [84] Adachi Y, Ooyama Y, Shibayama N, Ohshita J. Dithienogermole-containing D–π–A–π–A photosensitizers for dye-sensitized solar cells. Chem Lett. 2016:46.

    [85] Ooyama Y, Furue K, Enoki T, Kanda M, Adachi Y, Ohshita J. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Phys Chem Chem Phys. 2016;18(44):30662–30676.

    [86] Adachi Y, Ooyama Y, Shibayama N, Ohshita J. Synthesis of organic photosensitizers containing dithienogermole and thiadiazolo [3,4-c] pyridine units for dye-sensitized solar cells. Dalton Trans. 2016;45(35):13817–13826.

    [87] Ooyama Y, Uenaka K, Harima Y, Ohshita J. Development of D–π–A dyes with a pyrazine ring as an electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Adv. 2014;4(57):30225–30228. .

    [88] Mao J, He N, Ning Z, Zhang Q, Guo F, Chen L, et al. Stable dyes containing double acceptors without COOH as anchors for highly efficient dye-sensitized solar cells. Angew Chem. 2012;124(39):10011–10014.

    [89] Tang J, Qu S, Hu J, Wu W, Hua J. A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Sol Energy. 2012;86(9):2306–2311.

    [90] He J, Wu W, Hua J, Jiang Y, Qu S, Li J, et al. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. J Mater Chem. 2011;21(16):6054–6062.

    [91] Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, et al. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B. 2003;107(2):597–606.

    [92] Sayama K, Hara K, Mori N, Satsuki M, Suga S, Tsukagoshi S, et al. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem Commun. 2000(13):1173–1174.

    [93] Ehret A, Stuhl L, Spitler M. Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B. 2001;105(41):9960–9965.

    [94] Wang Z.-S, Li F.-Y, Huang C.-H. Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate. Chem Commun. 2000(20):2063–2064.

    [95] Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc. 2004;126(39):12218–12219.

    [96] Justin Thomas K, Hsu Y.-C, Lin J.T, Lee K.-M, Ho K.-C, Lai C.-H, et al. 2, 3-Disubstituted thiophene-based organic dyes for solar cells. Chem Mater. 2008;20(5):1830–1840.

    [97] Kim S, Lee J.K, Kang S.O, Ko J, Yum J.-H, Fantacci S, et al. Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc. 2006;128(51):16701–16707.

    [98] Chen R, Yang X, Tian H, Sun L. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. J Photochem Photobiol A. 2007;189(2):295–300.

    [99] Wu W, Yang J, Hua J, Tang J, Zhang L, Long Y, et al. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J Mater Chem. 2010;20(9):1772–1779.

    [100] Koumura N, Wang Z.-S, Mori S, Miyashita M, Suzuki E, Hara K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc. 2006;128(44):14256–14257.

    [101] Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv Funct Mater. 2005;15(2):246–252.

    [102] Kim S, Choi H, Kim D, Song K, Kang S.O, Ko J. Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell. Tetrahedron. 2007;63(37):9206–9212.

    Chapter 2

    Anthraquinone Dyes

    Abstract

    Anthraquinone (AQ) derivatives

    Enjoying the preview?
    Page 1 of 1