Nautilus

To Save the Deep Ocean, We Should Mine the Moon

The moon contains a lot of mineral wealth—but how practical is mining it? The post To Save the Deep Ocean, We Should Mine the Moon appeared first on Nautilus | Science Connected.

It’s a Faustian bargain for the Anthropocene: The greatest source of rare-earth metals are to be found at the bottom of the sea—and so are Earth’s most fragile ecosystems, an undisturbed and largely unexplored world of marvels.

The metals are required for the batteries that could power the clean energy revolution so desperately needed to avert the worst consequences of fossil fuel pollution-induced climate change, not to mention meet consumer demand for electronics. Yet mining them will have devastating consequences.

In an ideal world, mining would proceed slowly, with great caution, attentive to the creatures sacrificed for our appetites and to as-yet-unstudied consequences for Earth’s biogeochemical cycles. But the world is not ideal, and plans for deep-sea mining have proceeded at breakneck pace, with nearly 600,000 square miles of exploration permits granted by the International Seabed Authority and commercial mining expected to begin within the next several years.

We have a responsibility to life on the planet and to the diversity of the planet.

Humanity’s demand for metals—and the profits that will accrue from mining them—is on a collision course with deep-sea life. It appears that devastation is imminent—unless, argues Lewis Pinault, we mine the moon instead. “We have this gift of our geological twin, the moon, to provide us with mineral and energy wealth,” says Pinault. The trick is figuring out how.

Trained as an MIT engineer and NASA geophysicist, with an international law degree to boot, Pinault is a partner at Airbus Ventures, an early-stage venture capital firm focused on planetary challenges. Though moon mining may seem impossibly difficult at first glance, Pinault sees it as an engineering challenge no more daunting than mining the ocean floor, and certainly far less destructive. “Once we’ve done the hard work of knowing where to mine,” he says, “the next steps are solvable.”

talked to Pinault

You’re reading a preview, subscribe to read more.

More from Nautilus

Nautilus7 min readIntelligence (AI) & Semantics
The Soviet Rebel of Music
On a summer evening in 1959, as the sun dipped below the horizon of the Moscow skyline, Rudolf Zaripov was ensconced in a modest dormitory at Moscow State University. Zaripov had just defended his Ph.D. in physics at Rostov University in southern Rus
Nautilus5 min read
The Bad Trip Detective
Jules Evans was 17 years old when he had his first unpleasant run-in with psychedelic drugs. Caught up in the heady rave culture that gripped ’90s London, he took some acid at a club one night and followed a herd of unknown faces to an afterparty. Th
Nautilus5 min read
Nine Rebel Astronomy Theories That Went Dark
The history of astronomy has hinged on radical ideas that transformed our understanding of the cosmos and our place in it. The most obvious of these may be  the discovery in the 16th century that the Earth and other planets orbit the sun. An unpopula

Related Books & Audiobooks