Nautilus

Neuroscience Weighs in on Physics’ Biggest Questions

For an empirical science, physics can be remarkably dismissive of some of our most basic observations. We see objects existing in definite locations, but the wave nature of matter washes that away. We perceive time to flow, but how could it, really? We feel ourselves to be free agents, and that’s just quaint. Physicists like nothing better than to expose our view of the universe as parochial. Which is great. But when asked why our impressions are so off, they mumble some excuse and slip out the side door of the party.

Physicists, in other words, face the same hard problem of consciousness as neuroscientists do: the problem of bridging objective description and subjective experience. To relate fundamental theory to what we actually observe in the world, they must explain what it means “to observe”—to become conscious of. And they tend to be slapdash about it. They divide the world into “system” and “observer,” study the former intensely, and take the latter for granted—or, worse, for a fool.

A purely atomic explanation of behavior may be just that: an explanation of what atoms do. It would say nothing about brains, much less minds.

In their ambitions to create a full naturalistic explanation of the world, physicists have some clues, such as the paradoxes of black holes and the arbitrariness of the Standard Model of particles. These are our era’s version of the paradoxes of atoms and light that drove Einstein and others to develop quantum mechanics and relativity theory. The mysteries of the mind seldom come up. And they should. Understanding the mind is difficult and may be downright impossible in our current scientific framework. As philosopher David Chalmers told a Foundational Questions Institute conference last summer, “We won’t have a theory of everything without a theory of consciousness.” Having cracked open protons and scoured the skies for things that current theories can’t explain, physicists are humbled to learn the biggest exception of all may lie in our skulls.

Solving these deep problems will be a multigenerational project, but we are seeing the early stages of a convergence. It has become a thing for theoretical physicists to weigh in on consciousness and, returning the favor, for neuroscientists to weigh in on physics. Neuroscientists have been developing theories that are comprehensive in scope, built on basic principles, open to experimental testing, and mathematically meaty—in a word, physics-y.

Foremost among those theories is Integrated Information Theory, developed by neuroscientist Giulio Tononi at the University of Wisconsin-Madison. It models a conscious system, be it brain, bot, or Borg, as a network of neurons or equivalent components. The theory says the system is conscious to the extent

You’re reading a preview, subscribe to read more.

More from Nautilus

Nautilus3 min read
Archaeology At The Bottom Of The Sea
1 Archaeology has more application to recent history than I thought In the preface of my book, A History of the World in Twelve Shipwrecks, I emphasize that it is a history of the world, not the history; the choice of sites for each chapter reflects
Nautilus13 min read
The Shark Whisperer
In the 1970s, when a young filmmaker named Steven Spielberg was researching a new movie based on a novel about sharks, he returned to his alma mater, California State University Long Beach. The lab at Cal State Long Beach was one of the first places
Nautilus5 min read
The Bad Trip Detective
Jules Evans was 17 years old when he had his first unpleasant run-in with psychedelic drugs. Caught up in the heady rave culture that gripped ’90s London, he took some acid at a club one night and followed a herd of unknown faces to an afterparty. Th

Related Books & Audiobooks