Nautilus

Einstein’s Lost Hypothesis

When Ernest Sternglass walked up the steps at 112 Mercer Street in April 1947, he knew it would not be a normal day. Like a church deacon summoned to meet the Pope, Sternglass—a 23-year-old researcher at the Naval Ordnance Laboratory in Washington, D.C.—had arrived in Princeton, N.J., at the invitation of its most renowned resident, Albert Einstein. Having completed only a bachelor’s degree in electrical engineering, he had written to Einstein earlier that month about the work he was doing in his lab. To his great surprise, not only did Einstein promptly write back, he requested that Sternglass visit Princeton to discuss the work in person.

What Sternglass didn’t know is that his visit to Einstein would set off a chain of correspondence, involving both an unpublished experiment (his) and an unpublished hypothesis (Einstein’s) that together may constitute one of the century’s most important disregarded pieces of science. The reason why the science was overlooked is plain enough: It was at least a generation ahead of its time. Now, more than half a century later, the work is being re-examined, with potentially profound implications for sustainable energy production. For Sternglass was to discover how to create free neutrons with household wall socket evergy levels—and Einstein was to explain why.

On that spring day in 1947, though, Sternglass was a humble visitor to the St. Peter’s Basilica of physics. Having arrived in Princeton, he knocked on the door of the clapboard house, was let into the foyer by a secretary, and was soon confronted with the now-famous silhouette: an elderly man with a frizzy-haired halo, wearing an old sweat suit and bedroom slippers.

Sternglass had contacted Einstein because his lab in Washington was investigating how electrons are ejected from a metal when hit by a beam of electrons. The Navy wanted to understand this process better so they could develop night vision cameras, photography, and video that would be sensitive to the infrared light given off by body heat.

The reason why the science was overlooked is plain enough: It was at least a generation ahead of its time.

At first blush, Sternglass’ findings might seem like just a military curiosity, hardly worthy of reaching out to the architect of space-time itself. But Einstein had won his Nobel Prize for a theory explaining a phenomenon related, “without any advanced education in physics, about to ask the most renowned scientist in the world since Newton what he thought about my ideas.”

You’re reading a preview, subscribe to read more.

More from Nautilus

Nautilus3 min read
Archaeology At The Bottom Of The Sea
1 Archaeology has more application to recent history than I thought In the preface of my book, A History of the World in Twelve Shipwrecks, I emphasize that it is a history of the world, not the history; the choice of sites for each chapter reflects
Nautilus13 min read
The Shark Whisperer
In the 1970s, when a young filmmaker named Steven Spielberg was researching a new movie based on a novel about sharks, he returned to his alma mater, California State University Long Beach. The lab at Cal State Long Beach was one of the first places
Nautilus5 min read
The Bad Trip Detective
Jules Evans was 17 years old when he had his first unpleasant run-in with psychedelic drugs. Caught up in the heady rave culture that gripped ’90s London, he took some acid at a club one night and followed a herd of unknown faces to an afterparty. Th

Related Books & Audiobooks