Nautilus

Safecracking the Brain

It’s hard to imagine an encryption machine more sophisticated than the human brain. This three-pound blob of tissue holds an estimated 86 billion neurons, cells that rapidly fire electrical pulses in split-second response to whatever stimuli our bodies encounter in the external environment. Each neuron, in turn, has thousands of spindly branches that reach out to nodes, called synapses, which transmit those electrical messages to other cells. Somehow the brain interprets this impossibly noisy code, allowing us to effectively respond to an ever-changing world.

Given the complexity of the neural code, it’s not surprising that some neuroscientists are borrowing tricks from more experienced hackers: cryptographers, the puzzle-obsessed who draw on math, logic, and computer science to make and break secret codes. That’s precisely the approach of two neuroscience labs at the University of Pennsylvania, whose novel use of cryptography has distinguished them among other labs around the world, which are hard at work deciphering how the brain encodes complex behaviors, abstract thinking, conscious awareness, and all of the other things that make us human.

The Penn scientists have taken their cues from a 73-year-old algorithm that British code-breaker Alan Turing used to read secret German messages during World War II, and a mathematical sequence more famously used to break into digital keypad locks on cars. “Neurons extract information from the world and put it in code,” says Joshua Gold, an associate professor of neuroscience at the University of Pennsylvania. “There’s got to be some kind of code-breaker in the brain to make sense of that.” Employing cryptography in the neuroscience lab, adds Gold, has provided new insights into the “gooshy hardware” that is the brain, exposing its operations as an “information-processing machine.”

old didn’t give much thought to cryptography until the early 2000s, when he was working as a postdoctoral fellow in Michael Shadlen’s monkey lab at the University of Washington. The lab focused on how the brain makes simple perceptual decisions. How does it determine, for example, whether an object is moving to the left or to the right? The fundamental problem in making such decisions is the trade-off between speed and accuracy.

You’re reading a preview, subscribe to read more.

More from Nautilus

Nautilus3 min read
Archaeology At The Bottom Of The Sea
1 Archaeology has more application to recent history than I thought In the preface of my book, A History of the World in Twelve Shipwrecks, I emphasize that it is a history of the world, not the history; the choice of sites for each chapter reflects
Nautilus13 min read
The Shark Whisperer
In the 1970s, when a young filmmaker named Steven Spielberg was researching a new movie based on a novel about sharks, he returned to his alma mater, California State University Long Beach. The lab at Cal State Long Beach was one of the first places
Nautilus5 min read
The Bad Trip Detective
Jules Evans was 17 years old when he had his first unpleasant run-in with psychedelic drugs. Caught up in the heady rave culture that gripped ’90s London, he took some acid at a club one night and followed a herd of unknown faces to an afterparty. Th

Related Books & Audiobooks