Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Incomplete Dominance, Codominance, and Multiple Alleles

Incomplete Dominance, Codominance, and Multiple Alleles

FromMy AP Biology Thoughts


Incomplete Dominance, Codominance, and Multiple Alleles

FromMy AP Biology Thoughts

ratings:
Length:
5 minutes
Released:
Jun 2, 2021
Format:
Podcast episode

Description

My AP Biology Thoughts  Unit 5 HeredityWelcome to My AP Biology Thoughts podcast, my name is CJ and I am your host for episode #102 called Unit 5 Heredity: Different expressions of alleles. Today we will be discussing incomplete dominance, codominance and multiple alleles. Segment 1: Introduction to expression of alleles Alleles are what make us unique, they code us and make us appear the way we are. In simple biology, we learn about how genotype affects phenotype and when we start off on this concept, we visualize a simple set of alleles. And when we first start to learn about alleles, we learn that dominant alleles override and affect the phenotype even if a recessive allele is present. Let’s use ear lobes as an example; we can say attached earlobes are recessive and loose are dominant. If the offspring has attached earlobes and both parents have unattached earlobes, we see a perfect example of simple inheritance. We would typically draw out a punnett square. We cannot directly see what’s the genotype of the parents, however we can assume that they are both heterozygous due to the nature that their offspring is homozygous recessive. When drawing out the Punnett square, we can see that there is a 50/50 chance that the offspring will have attached earlobes. Segment 2: More About this However, nothing is ever that simple. As you can see, in the world around us, there are more than just two outcomes when it comes to anything living. In most cases, there are many more than just 2 phenotypes. The world is much more complicated than just dominant and recessive. That's where incomplete dominance, codominance and multiple alleles come into play. They show us that there is much more to life than just capital and lowercase letters.To start off, incomplete dominance has the same number of alleles as a standard dominant and recessive genotype. The main difference is that heterozygous organisms no longer just express the dominant allele, they express a phenotype that is in between homozygous dominant and homozygous recessive. A great example of this is some sort of flower. If there are three colors of flower, one red, one white and one pink. The red can be determined as the “dominant” while the white could be “recessive”, making any flower with heterozygous alleles pink. This represents incomplete dominance. And just like incomplete dominance, codominance is only made up of a single set of alleles too. However, instead of the phenotype being somewhere in the middle, for codominance, the phenotype for heterozygous is a mix of the two. Meaning if a species is represented by the genotype of one dominant and one recessive, they are going to express both phenotypes, in their own respective way. Now for when alleles get complicated. When there are multiple alleles, the same rules apply for simple dominance, where the heterozygous only expresses the dominant phenotype. However, there are more alleles that influence the phenotype as well. Depending on the trait, there could be 4 or more alleles that determine what a species looks like. Just like in eye color, where there are 16 different genes that determine what colors your eyes could be. And in theory you could use a Punnett square to determine the predicted offspring phenotypes, but that square would be substantially larger and more complicated as different letters are flying around. Segment 3: Connection to...
Released:
Jun 2, 2021
Format:
Podcast episode

Titles in the series (100)

The AP Biology Thoughts podcast is created by students for AP Biology students. At the end of each unit, students select topics to define, provide examples, and to make deeper connections to other units and the course.