Discover this podcast and so much more

Podcasts are free to enjoy without a subscription. We also offer ebooks, audiobooks, and so much more for just $11.99/month.

Metrische Geometrie

Metrische Geometrie

FromModellansatz


Metrische Geometrie

FromModellansatz

ratings:
Length:
43 minutes
Released:
Jul 28, 2016
Format:
Podcast episode

Description

Petra Schwer ist seit Oktober 2014 Juniorprofessorin an unserer Fakultät. Sie arbeitet im Institut für Algebra und Geometrie in der Arbeitsgruppe Metrische Geometrie. Ab Oktober 2016 startet in diesem Institut ein neues Graduiertenkolleg mit dem Titel Asymptotic Invariants and Limits of Groups and Spaces und Petra Schwer freut sich darauf, dort viele mit ihrer Begeisterung anstecken zu können. Ihr Weg in die Algebra war nicht ganz direkt: Sie hat zunächst Wirtschaftsmathematik in Ulm studiert. Ein Wechsel an die Uni Bonn ebnete den Weg ins etwas abstraktere Fahrwasser. Zwei Ausflüge in die Industrie (zwischen Diplom und Promotionszeit und in der Postdoc-Phase) haben ihre Entscheidung für die akademische Mathematik bekräftigt. Im Gegensatz zur Differentialgeometrie, die von Ihrem Ursprung her auf analytischen Methoden und Methoden der Differentialrechnung (wie zum Beispiel des Ableitens) beruht, untersucht die Metrische Geometrie Mengen mit Abstandsfunktion. Darunter fallen auch die klassischen Riemannschen Geometrien, aber auch viel allgemeinere geometrische Strukturen, wie zum Beispiel Gruppen oder Graphen. Eine Metrik ist nichts anderers als eine Funktion, die einen Abstand zwischen zwei Punkten definiert. Die Euklidische Geometrie (in zwei bzw. drei Dimensionen) ist sicher allen aus der Schule bekannt. Sie ist ein Beispiel eines Geometriemodells in der metrischen Geometrie. Euklid versuchte erstmals Geometrie von Ihren Grundbausteinen her zu beschreiben. Er hat sich gefragt: Was ist ein Punkt? Was ist eine Gerade? Wie lässt sich der Abstand eines Punktes zu einer Geraden definieren? Schließlich stellte er eine Liste von grundlegenden Objekten sowie deren Eigenschaften und Beziehungen auf (Axiome genannt) die eine Geometrie erfüllen soll. Diese Axiome sind dabei die Eigenschaften, die sich nicht aus anderen ableiten lassen, also nicht beweisbar sind. Eines dieser Axiome besagte, dass durch einen festen Punkt genau eine Gerade parallel zu einer vorgegebenen anderen Geraden verläuft. Es entbrannte ein Jahrhunderte dauernder Streit darüber, ob sich dieses Parallelenaxiom aus den anderen aufgestellten Axiomen ableiten lässt, oder ob man diese Eigenschaft als Axiom fordern muss. Sehr viel später wurde klar, dass der Streit durchaus einen wichtigen und tief liegenden Aspekt unserer Anschauungsgeometrie berührte. Denn es wurden gleich mehrere Mengen (mit Abstandsfunktion) entdeckt, in denen diese Eigenschaft nicht gilt. Deshalb nannte man die Geometrien, in denen das Parallelenaxiom nicht gilt nichteuklidische Geometrien. Ein sehr nahe liegendes Beispiele für nichteuklidische Strukturen ist z.B. die Kugel-Oberfläche (damit auch unsere Erdoberfläche) wo die euklidische Geometrie nicht funktioniert. In der Ebene ist der traditionelle Abstand zwischen zwei Punkten die Länge der Strecke, die beide Punkte verbindet. Das lässt sich im Prinzip auf der Kugeloberfläche imitieren, indem man einen Faden zwischen zwei Punkten spannt, dessen Länge dann anschließend am Lineal gemessen wird. Spannt man den Faden aber "falschrum" um die Kugel ist die so beschriebene Strecke aber nicht unbedingt die kürzeste Verbindung zwischen den beiden Punkten. Es gibt aber neben der klassischen Abstandsmessung verschiedene andere sinnvolle Methoden, einen Abstand in der Ebene zu definieren. In unserem Gespräch nennen wir als Beispiel die Pariser Metrik (oder auch SNCF oder Eisenbahnmetrik). Der Name beschreibt, dass man im französischen Schnellzugliniennetz nur mit umsteigen in Paris (sozusagen dem Nullpunkt oder Zentrum des Systems) von Ort A nach Ort B kommt. Für den Abstand von A nach B müssen also zwei Abstände addiert werden, weil man von A nach Paris und dann von Paris nach B fährt. Das verleiht der Ebene eine Baumstruktur. Das ist nicht nur für TGV-Reisende wichtig, sondern gut geeignet, um über Ordnung zu reden. Ebenso sinnvoll ist z.B. auch die sogenannte Bergsteiger-Metrik, die nicht allein die Distanz berücksichtigt, sondern auch den Aufwand
Released:
Jul 28, 2016
Format:
Podcast episode

Titles in the series (100)

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.